分析 (1)由题意可得a=2b,c=$\sqrt{3}$b,运用三角形的面积公式,计算可得a,b,进而得到椭圆方程;
(2)设直线AB的方程为x+2=my(m=$\frac{1}{k}$),代入椭圆方程,求得B的坐标,由题意可得C的坐标,求出△ABC的面积,运用对勾函数的单调性,即可得到最大值.
解答 解:(1)由题意可得a=2b,c=$\sqrt{3}$b,
△PF1F2的面积S=$\frac{1}{2}$•2$\sqrt{3}$b•b=$\sqrt{3}$,
得b=1,c=$\sqrt{3}$,a=2,
所以椭圆的标准方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)设直线AB的方程为x+2=my(m=$\frac{1}{k}$)
代入椭圆方程得(m2+4)y2-4my=0,
可得B($\frac{2{m}^{2}-8}{{m}^{2}+4}$,$\frac{4m}{4+{m}^{2}}$),C(-$\frac{2{m}^{2}-8}{4+{m}^{2}}$,-$\frac{4m}{4+{m}^{2}}$)
△ABC的面积S=$\frac{1}{2}$•2•$\frac{8m}{4+{m}^{2}}$=$\frac{8}{m+\frac{4}{m}}$,
令f(m)=m+$\frac{4}{m}$,f′(m)=1-$\frac{4}{{m}^{2}}$(1≤m≤2),
f′(m)≤0,f(m)=m+$\frac{4}{m}$在[1,2]上单调递减,
所以当m=2时,△ABC的面积的最大值为2.
点评 本题考查椭圆的方程和性质,主要考查椭圆方程的运用,联立直线方程,求得交点,同时考查三角形的面积公式和对勾函数的单调性的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1),(1,2) | B. | {(0,1),(1,2)} | C. | {y|y=1或y=2} | D. | {y|y≥1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com