精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通项公式.
考点:数列递推式,等比关系的确定
专题:综合题,等差数列与等比数列
分析:根据a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),再写一式,两式相减,化简可得{Sn+2}是以4为首项,2为公比的等比数列,求出Sn=2n+1-2,即可得到结论.
解答: 解:∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2
∴nan=n(Sn-Sn-1)-Sn+2Sn-1+2
∴nan=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,∴Sn-1+2≠0,
∴{Sn+2}是以4为首项,2为公比的等比数列.
∴Sn+2=2n+1
∴Sn=2n+1-2,
∴n≥2时,an=Sn-Sn-1=2n
n=1时,a1=S1=2,也满足上式,
∴an=2n
点评:本题考查数列递推式,考查等比数列的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①若锐角α、β满足cosα>sinβ,则α+β<
π
2

②f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
③要得到函数y=cos(
x
2
-
π
4
)
的图象,只需将y=sin
x
2
的图象向左平移
π
2
个单位;
④函数f(x)=lnx+3x-6的零点只有1个且属于区间(1,2);
⑤若关于x的不等式ax2+2ax+1>0恒成立,则a∈(0,1);
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )
A、
3
B、
π
3
C、
9
D、
16π
9

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(
1
2
+
3
2
i)2的共轭复数是(  )
A、-
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、-
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图、主视图、左视图、俯视图如图,M、N分别为A1B、B1C1的中点.下列结论中正确的个数有(  )
①直线MN与A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1
④三棱锥N-A1BC的体积为VN-A1BC=
1
6
a3
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦距是8,椭圆上任意一点到两焦点F1、F2的距离之和为10.
(1)求椭圆方程;
(2)在(1)的椭圆上求一点P,使PF1⊥PF2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=2,an+2=
2
3
an+1+
1
3
an
,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令cn=(-1)nSn(n∈N*),{cn}的前20项和T20=330.数列{bn}满足bn=2(a-2)dn-2+2n-1,a∈R.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn+1≤bn,n∈N*,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知a1=1,an+1=2an+4,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案