精英家教网 > 高中数学 > 题目详情
二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.
(Ⅰ)请写出一个满足条件的矩阵A,B;
(Ⅱ)利用(Ⅰ)的结果,计算C=BA,并求出曲线x-y-1=0在矩阵C对应的变换作用下的曲线方程.
考点:变换、矩阵的相等
专题:选作题,矩阵和变换
分析:(Ⅰ)由题意,二阶矩阵A对应的变换是横坐标不变,纵坐标的变换,二阶矩阵B对应的变换是逆时针旋转90°的旋转变换,故可求;
(2)先求得到C,设曲线x-y-1=0上任一点为(m,n),变换后的点的坐标为(x,y),从而有
0-
1
2
10
m
n
=
x
y
,故m=y,n=-2x,从而可求曲线方程.
解答: 解:(Ⅰ)由题意,二阶矩阵A对应的变换是横坐标不变,纵坐标变为原来一半的变换,故A=
10
0
1
2

二阶矩阵B对应的变换是逆时针旋转90°的旋转变换,故B=
0-1
10
   …(4分)
(Ⅱ)C=BA=
0-1
10
10
0
1
2
=
0-
1
2
10

设曲线x-y-1=0上任一点为(m,n),变换后的点的坐标为(x,y)
0-
1
2
10
m
n
=
x
y

∴m=y,n=-2x
∵m-n-1=0
∴2x+y-1=0
故所求曲线方程为:2x+y-1=0.         …(7分)
点评:本题主要考查了二阶矩阵,几种特殊的矩阵变换,属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在棱长为4的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、D1C1上的动点,点G为正方形B1BCC1的中心.则空间四边形AEFG在该正方体各个面上的正投影所构成的图形中,面积的最大值为(  )
A、4B、8C、12D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是(  )
A、
3
10
B、
7
10
C、
4
10
D、
6
10

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩掷骰子游戏:甲先掷一个骰子,记下向上的点数;然后乙再掷,同样记下向上的点数.如果两人所掷点数之和为偶数则甲胜,否则乙获胜.
(Ⅰ)求甲胜且点数之和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?用你所学的知识说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+an+1=6n+1(n∈N*
(1)若{an}是等差数列,求数列{an}的通项公式;
(2)若数列{an}满足a1=3,Sn是数列{an}的前n项的和,设bn=
2
2Sn+5n
,是否存在正整数k,使得
1
8
<b2+b4+…+b2k
1
7
?若存在,求出所有的k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距是2,离心率是0.5;
(1)求椭圆的方程;
(2)求证:过点A(1,2)倾斜角为45°的直线l与椭圆C有两个不同的交点;又记这两个交点为P、Q,试求出线段PQ的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,△PAB为正三角形,且面PAB⊥面ABCD,四边形ABCD为直角梯形,且AD∥BC,∠BCD=
π
4
,AD=1,BC=2,E为棱PC中点.
(1)求证:DE∥平面PAB;
(2)求证:面PAB⊥面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E为PD的中点.
(Ⅰ)求异面直线PC与AD所成的角;
(Ⅱ)求证:平面PAC⊥平面PDC;
(Ⅲ)求直线EC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

表示下列不等关系
(1)a是正数   
(2)a+b是非负数
(3)a小于3,但不小于-1   
(4)a与b的差的绝对值不大于5.

查看答案和解析>>

同步练习册答案