| A. | [-2,0)∪(0,2) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(0,2] | D. | (-2,2) |
分析 函数y=$\frac{ln(x+2)}{\sqrt{2-x}}$+$\frac{1}{x}$有意义,可得$\left\{\begin{array}{l}{x+2>0}\\{2-x>0}\\{x≠0}\end{array}\right.$,解不等式即可得到所求定义域.
解答 解:函数y=$\frac{ln(x+2)}{\sqrt{2-x}}$+$\frac{1}{x}$有意义,
可得$\left\{\begin{array}{l}{x+2>0}\\{2-x>0}\\{x≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>-2}\\{x<2}\\{x≠0}\end{array}\right.$,
即有-2<x<0或0<x<2.
定义域为(-2,0)∪(0,2).
故选:B.
点评 本题考查函数的定义域的求法,注意对数真数大于0,偶次根式被开方式非负,分式分母不为0,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | a<b<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com