精英家教网 > 高中数学 > 题目详情
9.若2sinθ+3cosθ=2,则sinθ+cosθ=$\frac{7}{13}$或1.

分析 将已知等式两边平方整理可得(12sinθ+5cosθ)cosθ=0,从而解得cosθ=0,或者12sinθ+5cosθ=0,分别解得sinθ,cosθ的值,即可求和得解.

解答 解:∵2sinθ+3cosθ=2,
∴两边平方有:4sin2θ+12sinθcosθ+9cos2θ=4,
(12sinθ+5cosθ)cosθ=0,
所以有:cosθ=0,代入原式,得 sinθ=1,
或者 12sinθ+5cosθ=0,解得:sinθ=-$\frac{5}{12}$cosθ,
代入原式,有:sinθ=-$\frac{5}{13}$,cosθ=$\frac{12}{13}$.
所以可得:sinθ+cosθ=1,或者 sinθ+cosθ=$\frac{7}{13}$.
故答案为:$\frac{7}{13}$或1.

点评 本题主要考查了同角三角函数基本关系的运用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设抛物线C:y2=x与直线l交于A,B两点(异于原点O),以AB为直径的圆恰好经过原点O.
(Ⅰ)求证:直线l过定点.
(Ⅱ)求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3-2log2x,g(x)=log2x.
(1)若x∈[1,8],求函数h(x)=(f(x)+1)g(x)的值域;
(2)求函数M(x)=$\left\{\begin{array}{l}{g(x),}&{f(x)≥g(x)}\\{f(x),}&{f(x)<g(x)}\end{array}\right.$的最大值;
(3)若不等式f(x2)f($\sqrt{x}$)≥kg(x)对任意x∈[1,8]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是480.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察下列等式:

照以上式子规律:
(1)写出第5个等式,并猜想第n个等式; (n∈N*
(2)用数学归纳法证明上述所猜想的第n个等式成立.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设P是圆O:x2+y2=1的一点,以x轴的非负半轴为始边,OP为终边的角记为θ(0≤θ<2π),又向量$\overrightarrow{e}$=($\sqrt{3}$,-1),且f(θ)=$\overrightarrow{e}•\overrightarrow{OP}$.
(1)求f(θ)的单调减区间;
(2)若关于θ的方程f(θ)=2sinα在[$\frac{π}{3},\frac{5π}{3}$)内有两个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别是a,b,c,已知A=$\frac{π}{3}$,b=1,△ABC的外接圆半径为1,则S△ABC=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{1}{{\sqrt{{{log}_{\frac{1}{2}}}(4x-3)}}}$的定义域为(  )
A..(1,+∞)B.($\frac{3}{4}$,∞)C.( $\frac{3}{4}$,1)D..( $\frac{3}{4}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z1=m(m-1)+(m-1)i,z2=(m+1)+(m2-1)i,(m∈R),在复平面内对应的点分别为Z1,Z2
(1)若z1是纯虚数,求m的值;
(2)若z2在复平面内对应的点位于第四象限,求m的取值范围.

查看答案和解析>>

同步练习册答案