精英家教网 > 高中数学 > 题目详情
把曲线x2-2y2=1先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于x轴的反射变换变为曲线C,求曲线C的方程.
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:先伸缩变换M=
1
2
0
01
,后反射变换N=
10
0-1
,得A=NM,即可得出结论.
解答: 解:先伸缩变换M=
1
2
0
01
,后反射变换N=
10
0-1

得A=NM=
10
0-1
1
2
0
01
=
1
2
0
0-1

在A变换下得到曲线C为4x2-2y2=1.   …(7分)
点评:本题主要考查求曲线的方程,函数图象的变换规律的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|lgx|,若f(a)=f(b)(0<a<b),则
1
a
+
2
b
(  )
A、有最小值3
B、无最小值
C、有最小值2
2
D、有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(1+a|x-a|),a∈R.
(1)若函数f(x)恰有2个零点,求a的值;
(2)若|f(x)|≤1对x∈[-1,1]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:(a2+a)x>a+1(a≠0且a≠-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有两条相交直线成60°角的直路X′X,Y′Y,交点是O,甲、乙两人分别在OX,OY上,甲的起始位置距离O点3km,乙的起始位置距离O点1km,后来甲沿X′X的方向,乙沿Y′Y的方向,两人同时以4km/h的速度步行.
(1)求甲乙在起始位置时两人之间的距离;
(2)设th后甲乙两人的距离为d(t),写出d(t)的表达式;当t为何值时,甲乙两人的距离最短,并求出此时两人的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角△ABC的斜边上的高将斜边分1:3的两部分.求此直角三角形的各内角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等差数列{an}满足:anan+1=4n2-1(n∈N*),各项均为正数的等比数列{bn}满足:b1+b2=3,b3=4.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}满足:cn=
an
bn
,其前n项和为Sn,证明1≤Sn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2loga(x-4)>loga(x-2),(a>1)求x的取值范围.

查看答案和解析>>

同步练习册答案