精英家教网 > 高中数学 > 题目详情
8.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若圆C的极坐标方程为ρ=4cosθ,则圆心C的直角坐标为(2,0).

分析 圆C的极坐标方程转化为ρ2=4ρcosθ,由此求出圆C的直角坐标方程,从而能求出圆心C的直角坐标.

解答 解:∵圆C的极坐标方程为ρ=4cosθ,
∴ρ2=4ρcosθ,
∴圆C的直角坐标方程为x2+y2-4x=0,
∴圆心C的直角坐标为(2,0).
故答案为:(2,0).

点评 本题考查圆心的直角坐标的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知焦点在 x 轴上的椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{1}{2}$,则 m=(  )
A.6B.$\sqrt{6}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax+$\frac{b}{x}+c({a>0}),g(x)=lnx$,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)若a=$\frac{1}{2}$,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})+\frac{n}{{2({n+1})}}({n≥1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为$\frac{3}{4}$,且甲、乙两人是否答对每个试题互不影响.
(Ⅰ)求甲通过自主招生初试的概率;
(Ⅱ)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(Ⅲ)记甲答对试题的个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=4,$BD=2\sqrt{3}$,PD⊥底面ABCD.
(1)证明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D的大小为$\frac{π}{6}$,求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0,f(x0)),其中x0满足f″(x0)=0.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}是各项均为正数的等比数列(公比q>1),bn=log2an,b1+b2+b3=3,b1b2b3=-3,则an=(  )
A.${a_n}={2^{2n-3}}$B.${a_n}={2^{5-2n}}$
C.${a_n}={2^{2n-5}}$D.${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为(  )
A.92B.92.5C.93D.93.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{{\begin{array}{l}{y≥x+2}\\{x+y≤4}\\{2y≥4-x}\end{array}}\right.$,则$z={(\frac{1}{2})^{2x-y}}$的最小值为2.

查看答案和解析>>

同步练习册答案