分析 (1)利用A为长轴右顶点,离心率为$\frac{{\sqrt{3}}}{2}$,确定椭圆的几何量,即可得到标准方程.
(2)利用双曲线的定义,求出a,可得b,即可得到标准方程.
解答 解:(1)由题意,a=2,c=$\sqrt{3}$,b=1,
∴椭圆的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)由题意$\sqrt{(3+2)^{2}+(2\sqrt{6})^{2}}$-$\sqrt{(3-2)^{2}+(2\sqrt{6})^{2}}$=7-5=2a,
∴a=1,
∵c=2,
∴b=$\sqrt{4-1}$=$\sqrt{3}$,
∴双曲线的标准方程是${x}^{2}-\frac{{y}^{2}}{3}$=1.
点评 本题考查椭圆、双曲线的方程与性质,考查学生的计算能力,确定椭圆、双曲线的几何量是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}-{y^2}=1$ | B. | y2-x2=1 | C. | y2-x2=1 | D. | ${y^2}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一、二象限 | B. | 第二、三象限 | C. | 第三、四象限 | D. | 第一、四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{4\sqrt{5}}{5}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2-\sqrt{2}$ | B. | $2+\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com