| A. | $-\frac{7}{5}$ | B. | $-\frac{77}{125}$ | C. | $\frac{77}{125}$ | D. | $\frac{7}{5}$ |
分析 结合条件,根据正弦定理即可求出cosC=$\frac{3}{5}$,进而求出cosB=$-\frac{7}{25}$,然后根据余弦定理即可求出|BC|的值,从而可求出向量$\overrightarrow{BC}$在$\overrightarrow{BA}$上的投影的值.
解答 解:如图,根据正弦定理:
$\frac{|AB|}{sinC}=\frac{|AC|}{sinB}$;
∴$\frac{5}{sinC}=\frac{6}{sin2C}$,即$\frac{5}{sinC}=\frac{6}{2sinCcosC}$;
∴$cosC=\frac{3}{5}$;
∴cosB=cos2C=2cos2C-1=$-\frac{7}{25}$;
由余弦定理,|AC|2=|AB|2+|BC|2-2|AB||BC|cosB;
即$36=25+|BC{|}^{2}-2•5•|BC|•(-\frac{7}{25})$;
解得|BC|=$\frac{11}{5}$;
∴向量$\overrightarrow{BC}$在$\overrightarrow{BA}$上的投影为:$|\overrightarrow{BC}|cosB=\frac{11}{5}×(-\frac{7}{25})=-\frac{77}{125}$.
故选B.
点评 考查正余弦定理的应用,二倍角的正余弦公式,以及投影的定义及计算公式.
科目:高中数学 来源: 题型:选择题
| A. | 2017 | B. | 2015 | C. | 2018 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{5}$ | B. | 3$\sqrt{2}$ | C. | $2\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.95 | B. | 0.05 | C. | 0.47 | D. | 0.48 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com