精英家教网 > 高中数学 > 题目详情
9.函数y=$\sqrt{\frac{2x-1}{3-x}}$+lg(x2-x-2)的定义域是(2,3).

分析 根据函数有意义列出不等式组解出.

解答 解:由函数有意义得:$\left\{\begin{array}{l}{\frac{2x-1}{3-x}≥0}\\{{x}^{2}-x-2>0}\\{3-x≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{(2x-1)(3-x)≥0}\\{{x}^{2}-x-2>0}\\{3-x≠0}\end{array}\right.$.解得2<x<3.
故答案为(2,3).

点评 本题考查了函数的定义域,一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若sin(π-α)=${log_8}\frac{1}{4}$,且α∈(-$\frac{π}{2}$,0),则tan(π+α)=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设P(m,n)是双曲线y=$\frac{k}{x}$的一点,过点P做x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的矩形PMON的面积为|k|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C:y=$\frac{1}{t-x}$经过点P(2,-1).
(1)求曲线C在点P处的切线方程;
(2)求过点O(0,0),且与曲线C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-a|x-1|-1.
(1)当a=4时,求y=f(x)的单调区间;
(2)若x∈R时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知非零正实数x1,x2,x3依次构成公差不为零的等差数列,设函数f(x)=xα,α∈{-1,$\frac{1}{2}$,2,3},并记M={-1,$\frac{1}{2}$,2,3}.下列说法正确的是(  )
A.存在α∈M,使得f(x1),f(x2),f(x3)依次成等差数列
B.存在α∈M,使得f(x1),f(x2),f(x3)依次成等比数列
C.当α=2时,存在正数λ,使得f(x1),f(x2),f(x3)-λ依次成等差数列
D.任意α∈M,都存在正数λ>1,使得λf(x1),f(x2),f(x3)依次成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a=12,A=60°,三角形有两解,则边b的取值范围为(12,8$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个几何体由八个面围成,每面都是正三角形,有四个顶点在同一平面内且为正方形,从该几何体的12条棱所在直线中任取2条,所成角为60°的直线共有48对.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若z2+z+1=0,则z2002+z2003+z2005+z2006等于(  )
A.2B.-2C.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.-$\frac{1}{2}$±$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

同步练习册答案