分析 (I)连结BD交AC于O,连结OE,根据中位线定理得出OE∥PB,故PB∥平面AEC;
(II)通过证明BC⊥平面PAB得出BC⊥PB,从而得出∠PBA为二面角的平面角,解出PA,代入体积公式计算体积.
解答
证明:(I)连结BD交AC于O,连结OE,
∵四边形ABCD是矩形,
∴O是BD的中点,又E是PD的中点,
∴OE∥PB,∵OE?平面AEC,PB?平面AEC,
∴PB∥平面AEC.
(II)∵PA⊥平面ABCD,BC?平面ABCD,
∴BC⊥PA,
∵四边形ABCD是矩形,∴BC⊥AB,
又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴BC⊥平面PAB,∵PB?平面PAB,
∴BC⊥PB,
∴∠PBA为平面PBC与平面ABCD所成二面角的平面角,
∴∠PBA=60°,
∵AB=1,PA⊥AB,
∴PA=$\sqrt{3}$,
∴VP-ABCD=$\frac{1}{3}{S}_{矩形ABCD}•PA$=$\frac{1}{3}×1×2×\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
点评 本题考查了线面平行的判定,二面角的定义,体积计算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 是奇函数 | B. | 是偶函数 | ||
| C. | 既是奇函数,又是偶函数 | D. | 是非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 销售量x(吨) | 2 | 3 | 5 | 6 |
| 销售收入y(千元) | 7 | 8 | 9 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,0)点 | B. | ($\overline{x}$,$\overline{y}$)点 | C. | (0,$\overline{y}$)点 | D. | ($\overline{x}$,0)点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com