精英家教网 > 高中数学 > 题目详情
3.在等差数列{an}中,S15>0,S16<0,求使an>0成立的n的最大值.

分析 由等差数列的性质和求和公式结合题意可得a8>0,a9<0,进而可得数列的前8项为正数,从第9项开始为负值,可得答案.

解答 解:∵由题意可得S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=$\frac{15×2{a}_{8}}{2}$=15a8>0,即a8>0;
同理可得S16=$\frac{16({a}_{1}+{a}_{16})}{2}$=$\frac{16({a}_{8}+{a}_{9})}{2}$=8(a8+a9)<0,即a8+a9<0,
综上可得a8>0,a9<0,故等差数列{an}为递减数列.
故数列的前8项为正数,从第9项开始为负值,
故使an>0成立的n的最大值为8.

点评 本题考查等差数中使an>0成立的n的最大值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,a=4,b=5,c=6,则$\frac{sinC}{sin2A}$=(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:x>k,q:$\frac{3}{x+1}$≥1,若p是q的必要不充分条件,则实数k的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$+$\overrightarrow{b}$=2$\overrightarrow{e}$1-8$\overrightarrow{e}$2,$\overrightarrow{a}$-$\overrightarrow{b}$=-8$\overrightarrow{e}$1+16$\overrightarrow{e}$2,其中|$\overrightarrow{e}$1|=|$\overrightarrow{e}$2|=1,$\overrightarrow{e}$1⊥$\overrightarrow{e}$2,则$\overrightarrow{a}$•$\overrightarrow{b}$=-63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,已知a=18,B=60°,C=75°,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1,且当x$∈[0,\frac{π}{2}]$时,f(x)的最小值为2.
(1)求a的值,并求(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再将所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中是偶函数的为(  )
A.f(x)=|x-1|B.f(x)=cos(x-$\frac{π}{2}$)C.f(x)=0D.f(x)=1+x2(x≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当α为钝角时,$\frac{sinα}{\sqrt{1-co{s}^{2}α}}$+$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某工程的横道图如图:

则该工程的总工期为47天.

查看答案和解析>>

同步练习册答案