精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
1
3
,(x>0)
3x,(x≤0)
,则f[f(-3)]=
 
考点:分段函数的应用,函数的值
专题:函数的性质及应用
分析:直接利用分段函数由里及外逐步求解函数值即可.
解答: 解:知函数f(x)=
x
1
3
,(x>0)
3x,(x≤0)

则f(-3)=3-3=
1
27

f[f(-3)]=f(
1
27
)=(
1
27
)
1
3
=(
1
3
)
1
3
=
1
3

故答案为:
1
3
点评:本题考查分段函数的应用,函数值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四组向量中,互相平行的组数为(  )
a
=(2,2,1),
b
=(3,-2,2)②
a
=(8,4,-6),
b
=(4,2,-3)③
a
=(0,-1,1),
b
=(0,3,-3)④
a
=(-3,2,0),
b
=(4,-3,3)
A、1组B、2组C、3组D、4组

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2
1
(ex-
2
x
)
dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2=2与圆x2+y2+4y+3=0的位置关系是(  )
A、相离B、外切C、内切D、相交

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的两边所在直线方程分别为x+y-1=0,x+1=0,第三边中点为(-
5
2
1
2
),则第三条边所在直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)证明:函数f(x)=x+
4
x
在(0,2]上是减函数;
(Ⅱ)已知函数f(x)=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
设常数a∈(1,9),求函数f(x)=x+
a
x
在x∈[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}得首项为a1=2,前n项和为Sn,且满足Sn=
n2
n2-1
Sn-1+
n
n+1
(n≥2)
(1)证明数列(
n+1
n
Sn)是等差数列,并求数列{an}得通项公式;
(2)设bn=
an
4n2-4n+3
.记数列{bn}得前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x-1)+
2a
x
(a∈R)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设m,n是正数,且m≠n,求证:
m-n
lnm-lnn
m+n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-3x+2与直线y=ax+b平行,求a,b满足的条件.

查看答案和解析>>

同步练习册答案