精英家教网 > 高中数学 > 题目详情
19.已知a>0,b>0,且(a+1)(b+1)=2,则a+b最小值为(  )
A.1-$\frac{\sqrt{2}}{2}$B.2-$\sqrt{2}$C.$\sqrt{2}$-1D.2$\sqrt{2}$-2

分析 直接利用基本不等式转化求解即可.

解答 解:a>0,b>0,且(a+1)(b+1)=2,
则a+b=a+1+b+1-2≥2$\sqrt{(a+1)(b+1)}$-2=2$\sqrt{2}-2$,
当且仅当a=b=$\sqrt{2}-1$时取等号.
故选:D.

点评 本题考查基本不等式以及应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知全集U={1,2,3,4,5},集合A={2,4},∁UB={2,3},求:
(1)A∩B;
(2)A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设二次函数f(x)=mx2-nx(m≠0),已知f(x)的图象的对称轴为x=-1,且f(x)的图象与直线y=x只有一个公共点.
(1)求f(x)的解析式;
(2)若关于x的不等式ef(x)>${(\frac{1}{e})}^{2-tx}$在x∈R时恒成立(其中e为自然对数的底数),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据日前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:
  男性 女性 合计
 20~35岁 a 40 100
 36~50岁 40 d 90
 合计 100 90 190
(Ⅰ)求统计数据表中a,d的值;
(Ⅱ)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用”DD共享单车“情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;
(Ⅲ)根据以上列联表,判断使用”DD共享单车“的人群中,能否有95%的把握认为”性别“与”年龄“有关,并说明理由.
参考数表
 P(K2>k) 0.100 0.050 0.010 0.001
 k 2.706 3.841 6.635 10.828
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=ln$\frac{π}{2}$-$\frac{π}{2}$,b=lnπ-π,c=ln$\frac{π}{3}$-$\frac{π}{3}$,则a,b,c的大小顺序为(  )
A.b>c>aB.a>b>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设(3x+$\sqrt{x}$)n的展开式的各项系数之和为M,二项式系数之和为N,若M-17N=480,则展开式中含x3项的系数为(  )
A.40B.30C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,若输入(0,0),则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,△ABC中,直线PQ与边AB、BC及AC的延长线分别交于点P、M、Q,$\overrightarrow{BM}$=3$\overrightarrow{MC}$,$\overrightarrow{AP}$=$\frac{t}{1-t}$$\overrightarrow{PB}$,$\overrightarrow{AQ}$=s$\overrightarrow{AC}$,则$\frac{1}{t}$+$\frac{3}{s}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆心在原点,半径为2的圆的渐开线的参数方程是(  )
A.$\left\{\begin{array}{l}{x=2(cosφ+φsinφ)}\\{y=2(sinφ-φcosφ)}\end{array}\right.$(φ为参数)
B.$\left\{\begin{array}{l}{x=4(cosθ+θsinθ)}\\{y=4(sinθ-θcosθ)}\end{array}\right.$(θ为参数)
C.$\left\{\begin{array}{l}{x=2(φ-sinφ)}\\{y=2(1-cosφ)}\end{array}\right.$(φ为参数)
D.$\left\{\begin{array}{l}{x=4(θ-sinθ)}\\{y=4(1-cosθ)}\end{array}\right.$(θ为参数)

查看答案和解析>>

同步练习册答案