精英家教网 > 高中数学 > 题目详情
设a,b分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+2ax+b=0的实根的个数(方程有等根时按一个计数).
(1)求方程x2+2ax+b=0有实根的概率;
(2)求ξ的概率分布表及数学期望;
(3)求在抛掷过程中,至少出现一次点数为6的条件下,方程x2+2ax+b=0有实根的概率.
考点:几何概型,离散型随机变量及其分布列
专题:计算题,概率与统计
分析:(1)由题意知本题是一个古典概型,试验发生包含的所有事件根据分步计数原理知是36,满足条件的事件:方程无实根,则4a2-4b≥0,a2≥b,通过列举法得到所包含的基本事件个数,利用古典概型的概率公式求出值.
(2)由题意知实根的个数只有三种结果,0、1、2,根据上一问的计算可以写出当变量取值时对应的概率,写出分布列及数学期望;
(3)利用古典概型的概率公式求出事件“先后两次出现的点数中有6”的概率,利用条件概率的概率公式求出方程x2+2ax+b=0有实根的概率.
解答: 解:(1)基本事件总数:6×6=36
①△>0,即4a2-4b>0,a2>b,共有5+5+5+4+4+4=27
②△=0,a2=b,共有1+1=2个
故方程有实根概率P=
27+2
36
=
29
36

(2)P(ξ=0)=
7
36
,P(ξ=1)=
2
36
=
1
18
,P(ξ=2)=
27
36
=
3
4

ξ的分布列为
ξ012

P
7
36
 
1
18
3
4
数学期望:Eξ=0×
7
36
+1×
1
18
+2×
3
4
=
28
18
=
14
9

(3)“有6”为事件A,则P(A)=1-
25
36
=
11
36
,P(AB)=
9
36

∴P(B|A)=
9
11
点评:本题主要考查离散型随机变量的分布列和古典概型,古典概型要求能够列举出所有事件和发生事件的个数,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(
a
x
-
x
2
9的展开式中x3项的系数为
9
4

(1)求a的值;
(2)求证:a15-1能被2a-1整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为
3
2
,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2
2
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙0的直径,点C是⊙0上的点,过点C的直线VC垂直于⊙0所在平面,且AC=
3
VC.
(Ⅰ)求证:平面VAC⊥平面VBC;
(Ⅱ)求直线VA与平面VBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=log4(x2-4x+3)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3×2x,若g(x)=
cxf(x)
2x(x2-1)
,讨论g(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|x-3|+|x-4|.
(Ⅰ)解不等式f(x)≤2;
(Ⅱ)若对任意实数x∈[5,9],f(x)≤ax-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数是否具有奇偶性(请先写出定义域,再进行判断).
(1)
1
x2+1
,x∈[1,2];
(2)f(x)=(x+1)(x-1);
(3)g(x)=(x+1);
(4)h(x)=x+
3x

(5)k(x)=
1
x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

命题A:“在△ABC中,BC2=AC2+AB2”是命题B:“△ABC是直角三角形”的
 
条件.

查看答案和解析>>

同步练习册答案