精英家教网 > 高中数学 > 题目详情
给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为
3
2
,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2
2
,求实数m的值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)记椭圆C的半焦距为c.由题意,得b=1,
c
a
=
3
2
,由此能求出a,b.
(2)由(1)知,椭圆C的方程为
x2
4
+y2=1,圆C1的方程为x2+y2=5.设直线l的方程为y=kx+m,由
y=kx+m
x2
4
+y2=1
,得(1+4k2)x2+8kmx+4m2-4=0.由此利用根的判别式、弦长公式、圆心到直线的距离,结合知识点能求出m.
解答: (本小题满分16分)
解:(1)记椭圆C的半焦距为c.
由题意,得b=1,
c
a
=
3
2
,c2=a2+b2
解得a=2,b=1.…(4分)
(2)由(1)知,椭圆C的方程为
x2
4
+y2=1,圆C1的方程为x2+y2=5.
显然直线l的斜率存在.
设直线l的方程为y=kx+m,即kx-y+m=0.  …(6分)
因为直线l与椭圆C有且只有一个公共点,
故方程组
y=kx+m
x2
4
+y2=1
(*)有且只有一组解.
由(*)得(1+4k2)x2+8kmx+4m2-4=0.
从而△=(8km)2-4(1+4k2)( 4m2-4)=0.
化简,得m2=1+4k2.①…(10分)
因为直线l被圆x2+y2=5所截得的弦长为2
2

所以圆心到直线l的距离d=
5-2
=
3

|m|
k2+1
=
3
.    ②…(14分)
由①②,解得k2=2,m2=9.
因为m>0,所以m=3. …(16分)
点评:本题主要考查实数值的求法,考查直线与椭圆、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆C”是由椭圆
x2
a2
+
y2
b2
=1(a>b>0)与抛物线y2=4x中两段曲线弧合成,F1、F2为椭圆的左、右焦点,F2(1,0).A为椭圆与抛物线的一个公共点,|AF2|=
5
2

(Ⅰ)求椭圆的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,与“盾圆C”依次交于M、N、G、H四点,P和P′分别为NG、MH的中点,求
|MH|
|NG|
|PF2|
|P′F2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(a,0)的直线l与圆(x-1)2+(y-3)2=4相交于A、B两点,存在PA=AB,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=2,an=an-12,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠∅且B?A,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,a∈R+,且x<y,求证:
x+a
y+a
x
y

查看答案和解析>>

科目:高中数学 来源: 题型:

在由1、2、3、4、5五个数字组成的没有重复数字的四位数中,
(1)1不在百位且2不在十位的有多少个;
(2)计算所有偶数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+2ax+b=0的实根的个数(方程有等根时按一个计数).
(1)求方程x2+2ax+b=0有实根的概率;
(2)求ξ的概率分布表及数学期望;
(3)求在抛掷过程中,至少出现一次点数为6的条件下,方程x2+2ax+b=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+3)的定义域为[-4,5],则f(2x-3)的定义域为
 

查看答案和解析>>

同步练习册答案