精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足条件$\left\{\begin{array}{l}|x|≤1\\|y|≤1\end{array}\right.$则z=2x+y的最小值是-3.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}|x|≤1\\|y|≤1\end{array}\right.$作出可行域如图,

化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(-1,-1)时,直线在y轴上的截距最小,z有最小值为2×(-1)-1=-3.
故答案为:-3.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sin($\frac{π}{2}$x+$\frac{π}{5}$),若对任意的实数x,总有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.2B.4C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-2x+3,
(1)求函数f(x)的单调区间;
(2)设函数g(x)=$\frac{2t}{x}$-x+1,若g(x)>f(x)对x>0恒成立,求整数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列三个命题:
①“a>b”是“3a>3b”的充分不必要条件;
②“α>β”是“cosα<cosβ”的必要不充分条件;
③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.
其中正确命题的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足f(-x)=-f(x).若方程f(x)=0有2015个实数根,则这2015个实数根之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数),曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosβ}\\{y=2+2sinβ}\end{array}\right.$(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1和C2的极坐标方程;
(2)已知射线l1:θ=α(0<α<$\frac{π}{2}$),将l1逆时针旋转$\frac{π}{6}$得到l2:θ=α+$\frac{π}{6}$,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取最大值时点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sin($\frac{π}{6}$-α)=$\frac{\sqrt{2}}{3}$,则cos($\frac{2π}{3}$+2α)=(  )
A.-$\frac{5}{9}$B.$\frac{5}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案