精英家教网 > 高中数学 > 题目详情
2.在△ABC中,AC=2AB=2,BC=$\sqrt{3}$,P是△ABC内部的一点,若∠APB=∠BPC=∠CPA,则PA+PB+PC=$\sqrt{7}$.

分析 由∠APB=∠BPC=∠CPA=120°,∠ACB=60°,可以得到∠ACP=∠PBC,判定两个三角形相似,然后用相似三角形的性质计算求出PB、PC的长,再利用余弦定理求出PA,即可得出结论.

解答 解:延长BP到B′,在BB'上取点E,使PE=PC,EB′=AP,
∵∠BPC=120°,
∴∠EPC=60°,
∴△PCE是正三角形,
∴∠CEB'=120°=∠APC
∵AP=EB′,PC=EC,
∴PC=CE,
∴△ACP≌△B′CE,
∴∠PCA=∠B′CE,AC=B′C=2
∴∠PCA+∠ACE=∠ACE+∠ECP
∴∠ACB′=∠PCE=60°,
∵AC=2AB=2,BC=$\sqrt{3}$,
∴AC2=BC2+AB2
∴∠ABC=90°,∠ACB=30°
∴∠BCB′=90°,
∵PE=PC,AP=B′E
∴PA+PB+PC=PA+EP+B′E=BB′=$\sqrt{B{C}^{2}+BB{′}^{2}}$=$\sqrt{7}$,
故答案为:$\sqrt{7}$.

点评 本题考查的是相似三角形的判定与性质,考查余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sinωx+cos(ωx+$\frac{π}{6}$)(ω>0)的最小正周期T=4π
(I)求ω;
(Ⅱ)当x∈[-π,π]时,求函数:y=f(x)-$\frac{1}{2}$的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知ξ服从正态分布N(1,σ2),a∈R,则“P(ξ>a)=0.5”是“关于x的二项式${({ax+\frac{1}{x^2}})^3}$的展开式的常数项为3”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分又不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α∈(π,$\frac{3}{2}$π),cosα=-$\frac{4}{5}$,则tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,-2),且|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则向量 $\overrightarrow a,\overrightarrow b$夹角的所有可能的余弦值之积为$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用.
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的公差d不为0.若a1=18,且a1,a4,a8成等比数列,则公差d=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过点P(-5,-4),且与两坐标轴在第三象限围成三角形面积为5的直线方程是8x+5y+20=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题正确的个数是(  )
A.“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
B.命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件;
C.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
D.“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案