精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=asin2x+(a+1)cos2x,a∈R,则函数f(x)的最小正周期为π,振幅的最小值为$\frac{\sqrt{2}}{2}$.

分析 利用辅助角公式化简,根据周期公式可得最小正周期,根据性质可得振幅的最小值.

解答 解:函数f(x)=asin2x+(a+1)cos2x,a∈R,
化简可得:f(x)=$\sqrt{{a}^{2}+(a+1)^{2}}$sin(2x+θ)=$\sqrt{2(a+\frac{1}{2})^{2}+\frac{1}{2}}$sin(2x+θ),其tanθ=$\frac{1+a}{a}$.
函数f(x)的最小正周期T=$\frac{2π}{2}=π$.
振幅为$\sqrt{2(a+\frac{1}{2})^{2}+\frac{1}{2}}$,
当a=$-\frac{1}{2}$时,可得振幅的最小值$\frac{\sqrt{2}}{2}$.
故答案为:π,$\frac{\sqrt{2}}{2}$.

点评 本题主要考查三角函数的图象和性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知实数x、y满足条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{y+1}{x+4}$的取值范围为[$\frac{1}{6}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一次期末模拟测试中,某市教研室在甲、乙两地各抽取了10名学生的数学成绩,得到茎叶图如图所示.
(Ⅰ)分别计算甲、乙两地这10名学生的平均成绩;
(Ⅱ)以样本估计总体,不通过计算,指出甲、乙两地哪个地方学生成绩较好;
(Ⅲ)在甲地被抽取的10名学生中,从成绩在120分以上的8名学生中随机抽取2人,求恰有1名学生成绩在140分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为$y=\frac{3}{4}x$,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把复数z的共轭复数记作$\overline{z}$,若(1+i)z=1-i,i为虚数单位,则$\overline{z}$=(  )
A.iB.-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知t=$\int_0^2{(3{x^2}-1)}$dx,若(1+tx)4=a0+a1x+a2x2+a3x3+a4x4,则a1-a2+a3-a4=-624.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C所对的边长分别为a、b、c,记S为△ABC的面积,若A=60°,b=1,S=$\frac{3\sqrt{3}}{4}$,则c=3,cosB=$\frac{5\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为(  )
A.$\sqrt{3}$B.$3\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=acosx-$\frac{1}{a}$(a>0且a≠1)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案