精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(m,3),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为$\frac{3}{2}$.

分析 根据平面向量的坐标运算与共线定理,列出方程求出m的值.

解答 解:∵向量$\overrightarrow{a}$=(m,3),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴2m-3×1=0,
解得m=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了平面向量的坐标运算与共线定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.△ABC中,角A,B,C对应的边分别为a,b,c,若sinA,sinB,sinC成等差数列,且$tanC=2\sqrt{2}$,则$\frac{sinB}{sinA}$等于(  )
A.$\frac{10}{9}$B.$\frac{14}{9}$C.$\frac{5}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正系数5次多项式f(x)满足以下两个条件.
(a)对任意x≠0,均有f(x)=x6f($\frac{1}{x}$);
(b)f(2)=10f(1),
则$\frac{f(3)}{f(2)}$的取值范围为($\frac{9}{2}$,$\frac{29}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个正方体截去四个角得到一个多面体,其三视图如图所示,则该多面体的体积为(  )
A.4B.$\frac{20}{3}$C.$\frac{4}{3}$(3+$\sqrt{2}$)D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}其通项公式为an=3n2-22n-1,则此数列中最小项为第(  )项.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若在平面直角坐标中,方程x2+2xsinxy+1=0所表示的图形为(  )
A.直线B.抛物线C.一个点D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.全称命题“?x∈R,x2+5x>4”的否定是(  )
A.?x0∈R,x2+5x>4B.“?x∈R,x2+5x≤4C.?x0∈R,x2+5x≤4D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.投掷两枚质地均匀的骰子,其向上的点数分别记为a,b,则直线ax-y+a-b=0在y轴上截距大于在x轴上截距的概率为(  )
A.$\frac{5}{12}$B.$\frac{5}{18}$C.$\frac{5}{6}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,|$\overrightarrow{BC}$|=6,设D是AB的中点,O是△ABC所在平面内一点,且3$\overrightarrow{OA}$+2$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,求|$\overrightarrow{DO}$|的值.

查看答案和解析>>

同步练习册答案