精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$={1,-1,2},$\overrightarrow{b}$={-2,2,m},且$\overrightarrow{a}$$∥\overrightarrow{b}$,则m的值为(  )
A.4B.-4C.2D.-2

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$$∥\overrightarrow{b}$,
∴存在实数λ使得$\overrightarrow{a}=λ\overline{b}$,
∴(1,-1,2)=λ(-2,2,m),
∴$\left\{\begin{array}{l}{1=-2λ}\\{-1=2λ}\\{2=λm}\end{array}\right.$,解得m=-4.
故选:B.

点评 本题考查了向量共线定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.圆C1:x2+y2+4x+4y+4=0与圆C2:x2+y2-4x-2y-4=0公切线条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.焦点坐标为(0,10),离心率是$\frac{5}{4}$的双曲线的标准方程为$\frac{{y}^{2}}{64}-\frac{{x}^{2}}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点P(2,-1,4)关于y轴对称的点的坐标为(-2,-1,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+$\frac{1}{9}$的值的一个程序框图,其中判断框内正整数α的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点F(1,0),直线l:x=-1,动点P到点F的距离等于它到直线l的距离.
(1)试判断点P的轨迹C的形状,并写出其方程;
(2)若曲线C与直线m:y=x-1相交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若c=2bcosA,则△ABC的形状一定是(  )
A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校早上7:30开始上课,假设该校学生小张与小王在早上7:00-7:20之间到校,且每人在该时间段的任何时刻到是等可能的,则小张比小王至少早5分钟到校的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线M的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同.如果直线y=-$\sqrt{2}$x是M的一条渐近线,那么M的方程为(  )
A.$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{18}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

同步练习册答案