精英家教网 > 高中数学 > 题目详情
已知向量
a
=(m,2),向量
b
=(2,-3),若|
a
+
b
|=|
a
-
b
|,则实数m的值是(  )
A、-2
B、3
C、
4
3
D、-3
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:将等式两边平方,运用向量的平方即为模的平方,结合向量的数量积的坐标表示,解m的方程,即可得到.
解答: 解:若|
a
+
b
|=|
a
-
b
|,
则(
a
+
b
2=(
a
-
b
2
a
2
+
b
2
+2
a
b
=
a
2
+
b
2
-2
a
b

a
b
=0,
由向量
a
=(m,2),向量
b
=(2,-3),
则2m-6=0,
解得m=3.
故选:B.
点评:本题考查向量的数量积的坐标表示和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,函数f(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,sinx),
n
=(cosx,2
3
cosx)
(x∈R),设函数f(x)=
m
n
-1.
(1)求函数f(x)的单调增区间;
(2已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B=
π
4
,边AB=3,求边BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点
(1)若直线AB斜率为1,且|AB|=4,求p;
(2)若p=2,求线段AB中点G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a+
2
2x+1
x∈R是奇函数.
(1)求a值;
(2)用定义证明:f(x)在R上是单调减函数;
(3)解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
3
+
y2
b2
=1(0<b<
3
),其通径(过焦点且与x轴垂直的直线被椭圆截得的线段)长
4
3
3

(1)求椭圆C的方程;
(2)设过椭圆C右焦点的直线(不与X轴重合)与椭圆交于A,B两点,且点M(
4
3
,0),判断
MA
MB
能否为常数?若能,求出该常数,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx-2,若f(2014)=10,则f(-2014)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)分别为定义在R上的奇函数和偶函数,且f(x)-g(x)=x2-x+3,则f(1)+g(1)=(  )
A、5B、-5C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中a1=5,a2=2,an=2an-1+3an-2,求{an}前n项和Sn

查看答案和解析>>

同步练习册答案