精英家教网 > 高中数学 > 题目详情
3.若不等式x2+y2≤2所表示的区域为M,不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{y≥2x-6}\end{array}\right.$表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为$\frac{π}{24}$.

分析 由题意,所求概率满足几何概型的概率,只要分别求出S阴影,SN,求面积比即可.

解答 解:由题,图中△OCD表示N区域,其中C(6,6),D(2,-2)
所以SN=$\frac{1}{2}$×$6\sqrt{2}×2\sqrt{2}$=12,S阴影=$\frac{2π}{4}$=$\frac{π}{2}$,
所以豆子落在区域M内的概率为$\frac{π}{24}$.
故答案为:$\frac{π}{24}$.

点评 本题主要考查了几何概率的求解,以及线性规划的知识,属于简单综合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.定义R在上的单调函数f(x)满足f(3)=log23,且对任意x,y∈R,都有f(x+y)=f(x)+f(y),
(1)求f(0);                
(2)求证:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正项数列{an}满足an2=2Sn-an,Sn为{an}的前n项和.
(1)求an
(2)若bn=$\frac{1}{{S}_{n}}$,数列{bn}前n项和Tn,若x∈[-1,1],不等式m2-2mx+2>Tn对n∈N*恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{2a+b}{c}$=$\frac{cos(π-B)}{cosC}$.
(1)求角C的大小;
(2)若c=2,且ab=$\frac{4}{3}$,求证:sinA=sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在正方体ABCD-A1B1C1D1中,若M是线段A1C1上的动点,则下列结论不正确的是(  )
A.三棱锥M-ABD的主视图面积不变B.三棱锥M-ABD的侧视图面积不变
C.异面直线CM,BD所成的角恒为$\frac{π}{2}$D.异面直线CM,AB所成的角可为$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,在海岛A上有一座海拔$\sqrt{3}$千米的山峰上,山顶上设有一座观察站P,一艘轮船沿一固定方向匀速航行,上午10:00时,测得此船在岛北偏东20°且俯角为30°的B处,到10:10时,又测得该船在岛北偏西40°且俯角为60°的C处,则该船的航行速度为$6\sqrt{7}$千米/时.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}为等差数列,数列{bn}满足bn=an+n,若b2,b5,b11成等比数列,且b3=a6
(1)求an,bn
(2)求数列{$\frac{1}{a_nb_n}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某商场为推销当地的某种特产进行了一次促销活动,将派出的促销员分成甲、乙两个小组分别在两个不同的场地进行促销,每个小组各4人.以下茎叶图记录了这两个小组成员促销这种特产的件数.
(Ⅰ)在乙组中任选2位促销员,求他们促销的件数都多于甲组促销件数的平均数的概率;
(Ⅱ)从这8名促销员中随机选取3名,设这3名促销员中促销多于35件的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
(Ⅰ)求证:BN⊥平面C1B1N;
(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;
(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求$\frac{BP}{PC}$的值.

查看答案和解析>>

同步练习册答案