精英家教网 > 高中数学 > 题目详情
双曲线=1的两焦点为F1、F2,点P在双曲线上,且直线PF1、PF2倾斜角之差为,则△PF1F2的面积为(    )
A.16B.32
C.32D.42
A
由题意可知|PF1|-|PF2|=6,∠ F1PF2=,|F1F2|=10.
由余弦定理,得|F1F2|2=(|PF1|-|PF2|)2+|PF1|·|PF2|.
∴|PF1|·|PF2|=64.
∴S=×64sin=16,选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知双曲线的离心率是。则         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:
(1)求此双曲线的离心率;
(2)若此双曲线过N(,2),求此双曲线的方程
(3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2x轴正半轴上),点A、B在双曲线上,且,求时,直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一条渐近线方程为y=x,且过点(2,4)的双曲线方程为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左、右两个焦点为, ,动点P满
足|P|+| P |=4.
(I)求动点P的轨迹E的方程;
(1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O
上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线与椭圆=1有共同的焦点,且与此椭圆一个交点的纵坐标为4,求这个双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1.
(1)若直线AP的斜率为k,且|k|∈[,],求实数m的取值范围;
(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果直线y=k(x-1)与双曲线x2-y2=4没有交点,则k的取值范围是_________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

F1、F2是双曲线-=1的两个焦点,P在双曲线上且满足|PF1|·|PF2|=32,则∠F1PF2=__________.

查看答案和解析>>

同步练习册答案