精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=(x2-ax+a+1)ex
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)函数f(x)有两个极值点,x1,x2(x1<x2),其中a>0.若mx1-$\frac{f({x}_{2})}{{e}^{{x}_{1}}}$>0恒成立,求实数m的取值范围.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)问题等价于m>$\frac{f{(x}_{2})}{{{x}_{1}e}^{{x}_{2}}}$=$\frac{{{x}_{2}}^{2}-{ax}_{2}+a+1}{{x}_{1}}$恒成立,即m>-${{x}_{2}}^{2}$+2x2+1恒成立,令t=a-2(t>2),则x2=$\frac{a-2+\sqrt{{a}^{2}-4a}}{2}$,令g(t)=$\frac{t+\sqrt{{t}^{2}-4}}{2}$,根据函数的单调性求出g(t)的最小值,从而求出m的范围即可.

解答 解:(Ⅰ)f′(x)=[x2+(2-a)x+1]ex
令x2+(2-a)x+1=0(*),
(1)△=(2-a)2-4>0,即a<0或a>4时,
方程(*)有2根,
x1=$\frac{a-2-\sqrt{{a}^{2}-4a}}{2}$,x2=$\frac{a-2+\sqrt{{a}^{2}-4a}}{2}$,
函数f(x)在(-∞,x1),(x2,+∞)递增,在(x1,x2)递减;
(2)△≤0时,即0≤a≤4时,f′(x)≥0在R上恒成立,
函数f(x)在R递增,
综上,a<0或a>4时,函数f(x)在(-∞,x1),(x2,+∞)递增,在(x1,x2)递减;
0≤a≤4时,函数f(x)在R递增;
(Ⅱ)∵f′(x)=0有2根x1,x2且a>0,
∴a>4且$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=a-2}\\{{{x}_{1}x}_{2}=1}\end{array}\right.$,
∴x1>0,mx1-$\frac{f{(x}_{2})}{{e}^{{x}_{2}}}$>0恒成立等价于m>$\frac{f{(x}_{2})}{{{x}_{1}e}^{{x}_{2}}}$=$\frac{{{x}_{2}}^{2}-{ax}_{2}+a+1}{{x}_{1}}$恒成立,
即m>-${{x}_{2}}^{2}$+2x2+1恒成立,
令t=a-2(t>2),则x2=$\frac{a-2+\sqrt{{a}^{2}-4a}}{2}$,
令g(t)=$\frac{t+\sqrt{{t}^{2}-4}}{2}$,
t>2时,函数g(t)=$\frac{t+\sqrt{{t}^{2}-4}}{2}$递增,g(t)>g(2)=1,
∴x2>1,∴-${{x}_{2}}^{2}$+2x2+1<2,
故m的范围是[2,+∞).

点评 本题考查函数的单调性问题,考查导数的应用,解决与不等式有关的参数范围和证明问题,考查函数与方程思想、转化与化归思想,分类思想,考查运算能力,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ 2x+y≥2\\ x-y≤2\end{array}\right.$目标函数z=x-2y的最大值是(  )
A.-4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义2×2矩阵$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}]$=a1a4-a2a3,若f(x)=$[\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}]$,则f(x)(  )
A.图象关于(π,0)中心对称B.图象关于直线$x=\frac{π}{2}$对称
C.在区间$[-\frac{π}{6},0]$上单调递增D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+1|+|x+m|.
(1)若函数f(x)的最小值为2,求m的值;
(2)当x∈[-1,1]时,不等式f(x)≤2x+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从二项式(1+x)11的展开式中取一项,系数为奇数的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,复数z满足条件|z-i|=|3-4i|,则|z|的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A是曲线ρ=3cosθ上任意一点,点A到直线ρcosθ=-1距离的最大值为(  )
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD是正方形,且平面ABCD⊥平面ABEG,F是AG上一点,且△ABE与△AEF都是等腰直角三角形,AB=AE,AF=EF.
(1)求证:EF⊥平面BCE;
 (2)设线段CD,AE的中点分别为P,M,求三棱锥M-BDP和三棱锥F-BCE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,给出下面三个结论:
①BC∥平面PDF;
②DF⊥平面PAE;
③平面PDF⊥平面ABC.
其中不成立的结论是③.(写出所有不成立结论的序号)

查看答案和解析>>

同步练习册答案