分析 Sm-1=-9,Sm=0,其中m>3,可得:(m-1)a1+$\frac{(m-1)(m-2)}{2}$d=-9,ma1+$\frac{m(m-1)}{2}$d=0,化为:d=$\frac{18}{m-1}$.由于m>3,且m∈N*,d为奇数,且d>1,通过分类讨论验证即可得出.
解答 解:∵Sm-1=-9,Sm=0,其中m>3,
∴(m-1)a1+$\frac{(m-1)(m-2)}{2}$d=-9,
ma1+$\frac{m(m-1)}{2}$d=0,
可得:d=$\frac{18}{m-1}$.
∵m>3,且m∈N*,d为奇数,且d>1,
∴d=3,m=7.
∴a1=-9.
∴an=-9+3(n-1)=3n-12.
故答案为:3n-12.
点评 本题考查了等差数列的通项公式及其前n项和公式,考查了分类讨论、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$,-$\sqrt{2}$ | B. | $\sqrt{2}$,1 | C. | $\sqrt{2}$,0 | D. | 2,-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | 2a | D. | $\frac{3}{4}$a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com