精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.$f(x)=\frac{{2-{x^2}}}{2x}$B.$f(x)=\frac{sinx}{x^2}$C.$f(x)=-\frac{{{{cos}^2}x}}{x}$D.$f(x)=\frac{cosx}{x}$

分析 由条件利用函数的图象特征,得出结论.

解答 解:根据f(x)的图象,可得当x=π时,f(x)<0,故排除B;
再根据函数的图象经过点($\frac{π}{2}$,0),故排除A;
再根据当x<0时,f(x)的值可正可负,故排除C,
故选:D.

点评 本题主要考查函数的图象特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的二次函数f(x)为偶函数,且满足f(1)=6,f(3)=2.
(1)求f(x)的解析式;
(2)若f(x)在区间[a,b]上值域为[2a,2b],试求所有符合题意的[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)为偶函数,点P,Q分别为函数y=f(x)图象上相邻的最高点和最低点,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.
(1)求函数f(x)的解析式;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f($\frac{A}{π}$)=$\frac{\sqrt{3}}{4}$,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正方体ABCD-A1B1C1D1中,M、N分别是AB、BB1的中点,则异面直线MN与BC1所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=4sinαcosα-5sinα-5cosα.
(1)若f(x)=1,求sinα+cosα的值;
(2)当$α∈[{0,\frac{π}{2}}]$时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=$\frac{{6+\sqrt{2}}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点M的直角坐标为(1,$\sqrt{3}$,-2)则它的球坐标是(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i是虚数单位,m,n∈R,且m+2i=2-ni,则$\frac{m+ni}{m-ni}$的共轭复数为i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,an=2-n,{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案