精英家教网 > 高中数学 > 题目详情

已知函数是定义在上的奇函数,当时,
(1)当时,求的表达式;
(2)在(1)的条件下,求函数的最大值.


第一问:,最大值为2
第二问:

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,若函数在其定义域内为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f (x)是偶函数,且在(0,+∞)上是增函数,若x∈[,1]时,不等式f (ax+1)≤f (x-2)恒成立,则求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(I)a=2时,求的公共点个数;
(II)a为何值时,的公共点个数恰为两个。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知f(x)、g(x)分别为奇函数、偶函数,且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数(1)求的定义域;(2)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数的图象关于原点对称,且
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式
(Ⅲ)若上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,其图象过点(,).
(1)求的值及最小正周期;
(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.

查看答案和解析>>

同步练习册答案