精英家教网 > 高中数学 > 题目详情
1.求函数y=|x+1|+|x-2|的最小值(其中-3≤x≤-2).

分析 根据绝对值的几何意义进行求解即可.

解答 解:当-3≤x≤-2时,y=|x+1|+|x-2|=-(x+1)-(x-2)=-2x+1,此时函数为减函数,
故当x=-2时,函数y=|x+1|+|x-2|取得最小值,此时y=-2×(-2)+1=4+1=5.

点评 本题主要考查函数最值的求解,根据绝对值的应用,化简函数是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+a(x<0)}\\{f(x-1)(x≥0)}\end{array}\right.$,且函数y=f(x)-x恰有3个不同的零点,则实数a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=sin2(2x+$\frac{π}{3}$)的导数是(  )
A.f′(x)=2sin(2x+$\frac{π}{3}$)B.f′(x)=4sin(2x+$\frac{π}{3}$)C.f′(x)=sin(4x+$\frac{2π}{3}$)D.f′(x)=2sin(4x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义区间(c,d)、(c,d]、[c,d)、[c,d]的长度均为d-c(d>c),己知实数p>0,则满足不等式$\frac{1}{x-p}$+$\frac{1}{x}$≥1的x构成的区间长度之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=$\frac{1{0}^{x}-1{0}^{-x}}{2}$(x∈R),求反函数y=f-1(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求值:$\frac{2sin20°+cos10°+tan20°•sin10°}{csc40°+cot80°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}的各项为互异正数,且其倒数构成等差数列,则$\frac{{a}_{1}{a}_{2}+{a}_{2}{a}_{3}+…+{a}_{2014}{a}_{2015}}{{a}_{1}{a}_{2015}}$=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是以1为周期的偶函数,且$f(-\frac{2}{5})=3$,若$sinα=\frac{{\sqrt{5}}}{5}$,则f(cos2α)的值是(  )
A.-3B.3C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数在其定义域内既是奇函数,又是增函数的是(  )
A.$y=\sqrt{x}$B.y=3xC.y=lgxD.y=x3

查看答案和解析>>

同步练习册答案