精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=2an-2(n∈N+).
(1)求数列{an}的通项公式;
(2)求数列{an•log2an}的前n项和Tn
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(1)当n=1时,a1=S1=2a1-1,当n>1时,Sn-1=2an-1-1,Sn-Sn-1=2an-2an-1,由此可知{an}是首项为2,公比为2的等比数列,进而可求数列{an}的通项公式;
(2)先求出数列{an•log2an}的通项,由于该数列的通项是一个等差数列与等比数列的积构成的新数列,利用错位相减法求出数列的和.
解答: 解:(1)当n=1时,a1=S1=2a1-2,∴a1=2.
当n>1时,Sn-1=2an-1-1,
∴Sn-Sn-1=2an-2an-1
∴an=2an-2an-1
∴an=2an-1
∴{an}是首项为2,公比为2的等比数列,∴an=2n,n∈N*
(2)an•log2an=n•2n
Tn=1×2+2×22+3×23…+(n-1)•2n-1+n•2n
∴2Tn=1×22+2×23+3×24…+(n-1)•2n+n•2n+1
两式相减得-Tn=2+22+23+…+2n-n•2n+1=2n+1-2-n•2n+1
则Tn=(n-1)•2n+1+2.
点评:本题主要考查了利用数列的递推公式构造等比数列,以及错位相减法求数列的和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
-2x+1,x≥0
4-x2,x<0
,则f(f(2))=(  )
A、4B、-5C、5D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

当1≤x≤3时,函数f(x)=2x2-6x+c的值域为(  )
A、[f(1),f(3)]
B、[f(1),f(
3
2
)]
C、[f(
3
2
),f(3)]
D、[c,f(3)]

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程z2=
.
z
,其中z为复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2=-
1
9

(Ⅰ)证明:l1与l2相交;
(Ⅱ)求l1与l2的交点P的轨迹C的方程;
(Ⅲ)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC上的点,PA=PD=AD=2BC=2,CD=
3

(1)求证:PE∥平面BDM; 
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)为R上的减函数,且f(xy)=f(x)+f(y).
(1)求f(1).
(2)解不等式f(2x-3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,⊙M的同心在x轴的正半轴上,且与y轴相切,过原点作倾斜角为
π
3
的直线n,交l于点A,交⊙M于另一点B,且|AO|=|OB|=2.
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的相线l1、l2,设l1与抛物线C相交于点P、Q,l2与抛物线C相交于点G、H,求
PG
HQ
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班联欢晚会玩投球游戏,规则如下:每人最多可连续投5只球,累积有三次投中即可获奖;否则不获奖.同时要求在以下两种情况下中止投球:①已获奖;②累积3次没有投中目标.已知某同学每次投中目标的概率是常数p(p>0.5),且投完3次就中止投掷的概率为
1
3
,设游戏结束时,该同学投出的球数为X.
(1)求p的值;
(2)求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案