精英家教网 > 高中数学 > 题目详情
10.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若椭圆上存在点P使$\frac{a}{sin∠PF_1F_2}$=$\frac{c}{sin∠PF_2F_1}$,求该椭圆的离心率的取值范围.

分析 利用正弦定理、椭圆的定义,结合条件,即可求该椭圆的离心率的取值范围.

解答 解:在△PF1F2中,由正弦定理知$\frac{sin∠P{F}_{1}{F}_{2}}{sin∠P{F}_{2}{F}_{1}}$=$\frac{|P{F}_{2}|}{|P{F}_{1}|}$,
∵$\frac{a}{sin∠P{F}_{1}{F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$,
∴$\frac{|P{F}_{2}|}{|P{F}_{1}|}$=$\frac{a}{c}$=$\frac{1}{e}$,即|PF1|=e|PF2|.①
又∵P在椭圆上,∴|PF1|+|PF2|=2a,
将①代入得|PF2|=$\frac{2a}{e+1}$∈(a-c,a+c),
同除以a得,1-e<$\frac{2}{e+1}$<1+e,得$\sqrt{2}$-1<e<1.

点评 本题考查椭圆的离心率的取值范围,考查正弦定理、椭圆的定义,考查学生分析解决问题的能力,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f($\sqrt{x}$+1)=x+2$\sqrt{x}$,求f(x),f(x+1),f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:(x+1)(x-1)(x2-x+1)(x2+x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1的棱长为1,G,H分别为DA1,CA1中点
(1)求证:GH∥平面CDD1C1
(2)求证:BC1⊥平面A1CD
(3)求三棱锥A-BCG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果方程x2+$\frac{{y}^{2}}{k}$=2表示焦点在x轴上的椭圆,那么实数k的取值范围是(  )
A.(0,2)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:x2+2y2=4
(1)求椭圆C的离心率;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{2}}{2}$),其离心率为$\frac{\sqrt{2}}{2}$,设直线l:y=kx+m与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)已知直线l与圆x2+y2=$\frac{2}{3}$相切,求证:OA⊥OB(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${∫}_{-\frac{π}{3}}^{\frac{π}{3}}$cosxdx=(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集U={1,2,3},集合A={1},集合B={1,2},则A∪∁UB={1,3}.

查看答案和解析>>

同步练习册答案