精英家教网 > 高中数学 > 题目详情
1.函数y=tan(2x+1)的最小正周期为$\frac{π}{2}$.

分析 直接利用正切函数求解周期即可.

解答 解:函数y=tan(2x+1)的最小正周期为:$\frac{π}{2}$.
故答案为:$\frac{π}{2}$.

点评 本题考查正切函数的周期的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆心为C的圆经过A(0,1)和B(3,4),且圆心C在直线l:x+2y-7=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)求过原点且与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:$\frac{si{n}^{2}x}{1+cotx}$+$\frac{co{s}^{2}x}{1+tanx}$=1-sinxcosx.[提示:a3+b3=(a+b)(a2-ab+b2)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线.则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{c}$的关系为(  )
A.不共线B.共线C.相等D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{5}{4}$cos2x-$\frac{\sqrt{3}}{2}$sinxcosx-$\frac{1}{4}$sin2x.
(Ⅰ)求函数f(x)取得最大值时x的集合;
(Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=$\frac{3}{5}$,f(C)=-$\frac{1}{4}$,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+3$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的正弦值为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=5sin3x-12cos3x的周期和最大值分别是$\frac{2π}{3}$;13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=x+5,每日的销售额S(单位:万元)与日产量x的函数关系式:S=$\left\{\begin{array}{l}{3x+\frac{k}{x-8}+7,0<x<6}\\{16,x≥6}\end{array}\right.$,已知每日的利润L=S-C,且当x=2时,L=3.
(1)求k的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若点P(1,1)在圆x2+y2+2x+4y+a=0外,则a的取值范围是(  )
A.a<-8B.a>-8C.-8<a<5D.a<-8或a>5

查看答案和解析>>

同步练习册答案