精英家教网 > 高中数学 > 题目详情
19.已知复数z满足z(1+i)=1(i为虚数单位),则z=(  )
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.1-iD.1+i

分析 直接利用复数的除法的运算法则化简求解即可.

解答 解:由z(1+i)=1,得z=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1-i}{2}$,
故选:A.

点评 本题考查复数的除法的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,已知$\frac{{S}_{100}}{{S}_{10}}$=100,那么$\frac{{a}_{100}}{{a}_{10}}$=$\frac{199}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\frac{i-1}{1+i}$=(  )
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等腰直角△ABC中,AB=AC=4,点P是边AB上异于A、B的一点,光线从点P出发经过BC、CA反射后又回到点P,光线交线段BC于点Q,交线段CA于点R,若光线QR经过△ABC的重心,求线段AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)在定义域内满足:(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①$f(x)=sin(x+\frac{π}{4})+cos(x+\frac{π}{4})$,x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{-x},-1≤x≤0}\\{lo{g}_{\frac{1}{2}}(x-1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有(  )
A.①③④B.①②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平面四边形ABCD中,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,求
(Ⅰ)BD;
(Ⅱ)∠ADB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展开式的常数项为15,则$\int_{-a}^a{({x^2}+x+\sqrt{4-{x^2}}})dx$=$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足不等式组$\left\{\begin{array}{l}3x-4≥0\\ y≥1\\ 3x+y-6≤0\end{array}\right.$,表示平面区域为D,已知点O(0,0),A(1,0),点M是D上的动点,$\overrightarrow{OA}•\overrightarrow{OM}=λ|\overrightarrow{OM}|$,则λ的最大值为$\frac{{5\sqrt{34}}}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若cos2x=$\frac{1}{2}$,其中$\frac{π}{2}$<x<π,则x的值为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

同步练习册答案