精英家教网 > 高中数学 > 题目详情
3.对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“可构造三角形函数”.以下说法正确的是(  )
A.f(x)=8(x∈R)不是“可构造三角形函数”
B.“可构造三角形函数”一定是单调函数
C.f(x)=$\frac{1}{{x}^{2}+1}$(x∈R)是“可构造三角形函数”
D.若定义在R上的函数f(x)的值域是[$\sqrt{e}$,e](e为自然对数的底数),则f(x)一定是“可构造三角形函数”

分析 由题,根据“可构造三角形函数”的定义对四个选项进行判断即可得出正确选项

解答 解:对于A选项,由题设所给的定义知,?a,b,c∈R,f(a),f(b),f(c)都是某一正三角形的三边长,是“可构造三角形函数”,故A选项错误;
对于B选项,由A选项判断过程知,B选项错误;
对于C选项,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=$\frac{1}{2}$,不构成三角形,故C错误;
对于D选项,由于$\sqrt{e}$$+\sqrt{e}$>e,可知,定义在R上的函数f(x)的值域是[$\sqrt{e}$,e](e为自然对数的底数),则f(x)一定是“可构造三角形函数”,故D正确
故选:D.

点评 本题考查综合法推理及函数的值域,三角形的性质,理解新定义是解答的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的前n项和为Sn(n∈N*),且满足S15>0,S16<0,则下列选项中最大的为(  )
A.$\frac{{S}_{6}}{{a}_{6}}$B.$\frac{{S}_{7}}{{a}_{7}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{8}}{{a}_{8}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系中,O是坐标原点,两定点A,B满足$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=\overrightarrow{OA}•\overrightarrow{OB}=2$,则$\overrightarrow{OA},\;\overrightarrow{OB}$的夹角为60°;点集$\{\left.{P\;}\right|\;\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}\;,\;λ+μ≤1\;,\;λ≥0\;,\;μ≥0\}$所表示的区域的面积是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+3,
(Ⅰ)求f(x)的表达式;
(Ⅱ)在所给的坐标系中画出f(x)的草图(要求:要标出与坐标轴的交点,顶点),然后写出f(x)的单调区间;
(Ⅲ)若函数y=a的图象与y=f(x)的图象恰有两个交点,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有$f(x)>0,f(x+2)=\frac{1}{f(x)}$.则f(2015)=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log${\;}_{\frac{1}{2}}$(-x+1)
(1)求f(3)+f(-1)
(2)求函数f(x)的解析式;
(3)若f(a-1)<-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|,若函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$|$\overrightarrow a$|x2+$\overrightarrow a$$\overrightarrow b$x+1在R上存在极值,则$\overrightarrow a$和$\overrightarrow b$夹角的取值范围是(  )
A.$[{0,\frac{π}{6}})$B.$({\frac{π}{3},π}]$C.$({\frac{π}{3},\frac{2π}{3}}]$D.$[{\frac{π}{3},π}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的偶函数,且x≤0时,$f(x)={log_{\frac{1}{2}}}(-x+1)$,若f(a-1)<-1,则a的取值范围是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$x2-ax-2a2lnx.
(1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的取值范围.
(2)证明:$\sum_{i=2}^{n}$$\frac{1}{lni}$>$\frac{n-1}{n}$(n≥2,且n∈N*).

查看答案和解析>>

同步练习册答案