精英家教网 > 高中数学 > 题目详情
13.若复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m的值为(  )
A.m=2B.m=3C.m=2或m=3D.m=0

分析 根据复数为纯虚数的充要条件列出方程组,求出m的值即可.

解答 解:∵复数(m2-5m+6)+(m2-3m)i是纯虚数,
∴$\left\{\begin{array}{l}{{m}^{2}-5m+6=0}\\{{m}^{2}-3m≠0}\end{array}\right.$,解得m=2,
故选:A.

点评 本题考查复数为纯虚数的充要条件,牢记复数的基本概念是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.由不等式组$\left\{\begin{array}{l}{1≤x≤e}\\{lnx-y+1≥0}\\{2x-(e-1)y-2≤0}\end{array}\right.$确定的平面区域为M,由不等式组$\left\{\begin{array}{l}{1≤x≤e}\\{0≤y≤2}\end{array}\right.$确定的平面区域为N,在N内随机的取一点P,则点P落在区域M内的概率为(  )
A.$\frac{1}{2e-2}$B.$\frac{e-2}{2e-2}$C.$\frac{3-e}{4e-4}$D.$\frac{e}{2e-2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中的内角为A,B,C,重心为G,若2sinA$\overrightarrow{GA}$+$\sqrt{3}$sinB$\overrightarrow{GB}$+3sinC$\overrightarrow{GC}$=$\overrightarrow{0}$,则cosB=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M、N是△ABC的边BC、CA上的点,且$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CA}$,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,若$\overrightarrow{MN}$=r$\overrightarrow{a}$+s$\overrightarrow{b}$,则r-s的值是(  )
A.$\frac{2}{3}$B.0C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinωx(ω>0),若y=f(x)图象过$(\frac{3π}{4},0)$点,且在区间$(-\frac{π}{4},0)$上是增函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.正项等比数列{an}中的a1,a9是函数f(x)=$\frac{1}{3}{x^3}-a{x^2}$+x+1的极值点,则lna5=(  )
A.-1B.0C.1D.与a的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.命题p:方程$\frac{x^2}{m-9}$+$\frac{y^2}{25-m}$=1表示椭圆;命题q:关于x的不等式|x+3|+|x-4|<m有解.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复平面上表示复数z=1-i(i为虚数单位)的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是棱DD1的中点.
(Ⅰ)求证:CD1∥平面A1BE
(Ⅱ)求三棱锥B1-A1BE的体积.

查看答案和解析>>

同步练习册答案