精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=1,
1
2an+1
=
1
2an
+1(n∈N*).
(Ⅰ)求证{
1
an
}是等差数列;
(Ⅱ)若bn=an•an+1,求{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2
,利用等差数列的通项公式即可得出;
(II)bn=anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂项求和”即可得出.
解答: 解:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2

∴数列{
1
an
}
是等差数列,首项
1
a1
=1
,公差d=2.
1
an
=
1
a1
+(n-1)d=2n-1

an=
1
2n-1

(II)∵bn=anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Sn=a1a2+a2a3+…+anan+1
    =
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1
点评:本题考查了等差数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙C的方程为x2+(y-1)2=5,直线l经过点(1,1).
(1)若直线l的倾斜角为
π
4
,求直线l的方程;
(2)设直线l与⊙C交于A、B两点,若|AB|=
17
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

动点到直线x=6的距离是它到点A(1,0)的距离的2倍,那么动点的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=
n2-1,n为偶数
2n,n为奇数
,且f(n)=a1+a2+a3+…+a2n-2+a2n-1,(n∈N*),则f(4)-f(3)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2
1
(x+
1
x
)dx=
 
0
-2
4-x2
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线中心在原点,以坐标轴为对称轴,且与圆x2+y2=17相交于A(4,-1),若圆在A点处的切线与双曲线的渐近线平行,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知元素(x,y)在映射f下的像是(x+2y,x-2y),则(3,1)在f下的原像为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β(不包括△ABC所在平面)的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则z=2x-y的最大值为
 

查看答案和解析>>

同步练习册答案