精英家教网 > 高中数学 > 题目详情
9.如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=$\sqrt{5}$,PB=$\sqrt{3}$,E,F分别是棱AD,PC的中点.
(I)求证:EF∥平面PAB;
(Ⅱ)求证:平面PCD⊥平面PBD.

分析 (1)利用线面平行的判定定理或面面平行的性质定理证明.
(2)利用面面垂直的判定定理证明.

解答 证明(1)取PB中点M,连接FM、MA,
∵F,M为PC,PB的中点,
∴FM∥BC,FM=$\frac{1}{2}$BC,(中位线定理),
∵ABCD是平行四边形且E是AD的中点,
∴AE∥BC,AE=$\frac{1}{2}$BC,
∴FM∥AE,FM=AE,
即四边形FMAE是平行四边形,
∴FE∥MA,
∵MA?平面PAB,EF??平面PAB,
∴EF∥平面PAB.
(2)∵BA=BD=$\sqrt{2}$,AD=2,
∴BD2+BA2=AD2,即AB⊥BD,
∴PB=$\sqrt{3}$,AB=$\sqrt{2}$,PA=$\sqrt{5}$,
∴AB2+PB2=PA2,即PB⊥AB,
∴PB,BD?平面PBD,PB∩BD=B,
∴AB⊥面PBD.
∵CD∥BA,
∴CD⊥面PBD
又cD?面PCD.
∴平面PCD⊥平面PBD.

点评 本题主要考查线面平行和面面垂直的判定,要求熟练掌握相应的判定定理和性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点都在坐标原点O,点F是椭圆C1的右焦点,点M位于x轴上方且在抛物线C2的准线上,已知曲线C1:C2上各有两点,其坐标关系如下表:
x-4-1-$\frac{1}{2}$0
y-8$\frac{3}{2}$2$\sqrt{2}$$\sqrt{3}$
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以线段OM为直径且被直线5x+12y-9=0截得的弦长为4的圆C的方程;
(Ⅲ)过点F斜率为k(k≠0)的直线l与C1交于P、Q两点,与圆C交于A、B两点.问:是否存在直线l,使得线段PQ与线段AB有相同的中点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+2alnx.求函数f(x)的单调区间;.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x,y都是正实数,比较$\sqrt{{x}^{2}+{y}^{2}}$与(x3+y3)${\;}^{\frac{1}{3}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)若N是BC的中点,求证:AN∥平面CME;
(2)求证:平面BDE⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,DC⊥平面ABC,∠BAC=90°,AC=1,BC=2,CD=$\frac{{2\sqrt{3}}}{3}$,点E在BD上,且BE=3ED.
(Ⅰ)求证:AE⊥BC;
(Ⅱ)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当$\frac{BD}{AB}$=$\frac{1}{5}$时,求三棱锥B-CDB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正四棱锥S-ABCD的底面边长为4cm,侧棱长为8cm,求棱锥的高SO,斜高SE.(作图)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某家轿车在x年的使用过程中支出,购车费12万,保险,养路,燃油费等各种费用每月共计1万元,维修费(0.1x2+0.1x)万元,使用x年后价值为(10-0.8x)万元,显然汽车年平均支出y(万元)是x的函数.
(1)写出y关于x的函数关系式;
(2)探究函数的变化规律,并证明什么时候平均支出最少?

查看答案和解析>>

同步练习册答案