精英家教网 > 高中数学 > 题目详情
19.某家轿车在x年的使用过程中支出,购车费12万,保险,养路,燃油费等各种费用每月共计1万元,维修费(0.1x2+0.1x)万元,使用x年后价值为(10-0.8x)万元,显然汽车年平均支出y(万元)是x的函数.
(1)写出y关于x的函数关系式;
(2)探究函数的变化规律,并证明什么时候平均支出最少?

分析 (1)根据题意直接列出y关于x的函数关系式,并求出x的范围;
(2)先化简函数解析式,再利用基本不等式判断出函数的单调性,从而求出函数的最小值以及x的值.

解答 解:(1)由题意得,y=$\frac{12+12x+(0.1{x}^{2}+0.1x)-(10-0.8x)}{x}$
=$\frac{0.1{x}^{2}+12.9x+2}{x}$(x∈N+);
(2)由(1)可得,y=$0.1x+\frac{2}{x}$+12.9,
由基本不等式得,$0.1x+\frac{2}{x}≥2\sqrt{0.1x•\frac{2}{x}}$=2$\sqrt{0.2}$,
当且仅当$0.1x=\frac{2}{x}$时取等号,此时x2=20,
则函数y在(0,$\sqrt{20}$)递减,在($\sqrt{20}$,+∞)递增,
因为x取正整数,所以x取4或5,
当x=4时,y=13.8;当x=5时,y=13.8,
所以使用4或5年时平均支出最少.

点评 本题考查了函数的实际应用问题,以及基本不等式的应用,注意自变量的实际意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=$\sqrt{5}$,PB=$\sqrt{3}$,E,F分别是棱AD,PC的中点.
(I)求证:EF∥平面PAB;
(Ⅱ)求证:平面PCD⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=30°,则圆O的面积是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=6n-n2,求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量序列:$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,…,$\overrightarrow{{a}_{n}}$,…满足条件:|$\overrightarrow{a{\;}_{1}}$|=2且$\overrightarrow{{a}_{n}}$-$\overrightarrow{{a}_{n-1}}$=$\overrightarrow{d}$(n≥2,n∈N),其中向量$\overrightarrow{d}$满足:|$\overrightarrow{d}$|=$\frac{1}{2}$且2$\overrightarrow{{a}_{1}}$•$\overrightarrow{d}$=-1.
(1)求数列{|$\overrightarrow{{a}_{n}}$|}的最小项;
(2)是否存在正整数m,p,n,使得当m>p>n时,有$\overrightarrow{{a}_{m}}$•$\overrightarrow{{a}_{n}}$=$\overrightarrow{{a}_{p}}$2,若存在,求出p的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列中,Sn=3n+a,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B、C是球O上的三点,AB=3,BC=4,AC=5,球O到平面ABC的距离为1,求球O的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,BC∥AD且2BC=AD,∠PBC=90°,∠PBA≠90°.
(1)求证:平面PBC⊥平面PAB;
(2)若平面PAB∩平面PCD=l,求证:直线l不平行于平面ABCD.(用反证法证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求三棱锥E-FCB1的体积.

查看答案和解析>>

同步练习册答案