精英家教网 > 高中数学 > 题目详情
等比数列{an}满足an>0,n∈N+,且a3a2n-3=22n(n≥2),则当n≥1时,log2a1+log2a2+…+log2a2n-1=(  )
A、n(2n-1)
B、(n+1)2
C、n2
D、(n-1)2
考点:等比数列的性质
专题:等差数列与等比数列
分析:根据条件先求出等比数列的通项公式,然后根据对数的运算法则以及等差数列的通项公式即可得到结论.
解答: 解:∵a3a2n-3=22n(n≥2)
(a1q2?a1q2n-4)=(a1 2q2n-2)=(a1qn-1)2=
a
2
n
=(2n)2

∵an>0,
∴an=2n,即log2an=log22n=n,
即log2a1+log2a2+…+log2a2n-1=1+2+…+(2n-1)=
(1+2n-1)(2n-1)
2
=n(2n-1),
故选:A.
点评:本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且经过点P(1,
2
2
).直线l1:y=k1x+m1与椭圆M交于A,C两点,直线l2:y=k2x+m2与椭圆M交于B,D两点,四边形ABCD是平行四边形.
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项为
3
2
的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列,则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=x2+4x+5的图象按向量
a
经一次平移后得到y=x2的图象,则
a
等于(  )
A、(2,-1)
B、(-2,1)
C、(-2,-1)
D、(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+2y≤4
x-y≤1
x+2≥0
,则目标函数z=y-x的最大值是(  )
A、5B、-1C、-5D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

从2、3、5、7这四个质数中任取两个相乘,可以得到不相等的积的个数是(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=-2i,则
1
z+1
的虚部为(  )
A、
2
5
i
B、
2
5
C、
2
5
5
i
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=9x+2•3x-2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和Sn=2n
(Ⅰ)求{an}的通项公式;
(Ⅱ)令bn=nan.求{bn}的前10项和.

查看答案和解析>>

同步练习册答案