精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\sqrt{2}$sin(ωx-$\frac{π}{4}$)(ω>0)最小正周期是π,
(1)求ω的值.
(2)若x∈[0,$\frac{π}{2}$]且f(x)=0,求x的值.

分析 (1)根据f(x)解析式,利用周期公式,即可求得ω的值;
(2)由(1)求得函数解析式,令f(x)=0,求得x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z,根据x的取值范围,即可求得x的值.

解答 解:(1)f(x)=$\sqrt{2}$sin(ωx-$\frac{π}{4}$),
由周期公式T=$\frac{2π}{ω}$,即ω=$\frac{2π}{T}$=2,
∴ω=2;
∴f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
(2)f(x)=0,即sin(2x-$\frac{π}{4}$)=0,
∴2x-$\frac{π}{4}$=kπ,k∈Z,
∴x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z,
∵x∈[0,$\frac{π}{2}$],
∴$x=\frac{π}{8}$.

点评 本题考查正弦函数周期公式,求正弦函数的函数值,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(1)已知函数f(x)=x2(x-a),若f(x)在(2,3)上单调递减,求实数a的取值范围;
(2)已知函数f(x)=x3-3ax2+2a2x+1在[0,2]上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.m为何值时,关于x的方程8x2-(m-1)x+m-7=0的两根:
(Ⅰ)都大于1;
(Ⅱ)一根大于2,一根小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|ln(x-1)|,若实数a,b(a<b)满足f(a)=f(b),则-a+5b的取值范围为(  )
A.(5,8)B.(8,9)C.(5,9)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则点P的轨迹方程为y2=4(x-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sinxcosx+cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)若函数f(x)在区间[0,m]上恰好有10个零点,求正数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,cosx<$\frac{1}{2}$”的否定是(  )
A.?x<R,cosx≥$\frac{1}{2}$B.?x∈R,cosx>$\frac{1}{2}$C.?x<R,cosx≥$\frac{1}{2}$D.?x∈R,cosx>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥平面ABCD,PA=AB=AD=$\frac{1}{2}$CD=1,∠BAD=∠ADC=90°.
(1)求直线PD与平面PAB所成角的大小;
(2)求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过直线3x+4y-2=0与2x+y+2=0的交点P,且垂直于直线x-3y+1=0
(Ⅰ)求直线l方程;
(Ⅱ)求直线l与两坐标轴围成的三角形的面积S.

查看答案和解析>>

同步练习册答案