分析 把要求的式子变形为(x+y)($\frac{1}{x}$+$\frac{4}{y}$),利用基本不等式即可得到$\frac{4x+y}{xy}$的最小值.
解答 解:∵正数x,y满足x+y=1,
∴$\frac{4x+y}{xy}$=$\frac{1}{x}$+$\frac{4}{y}$
=(x+y)($\frac{1}{x}$+$\frac{4}{y}$)
=1+$\frac{4x}{y}$+$\frac{y}{x}$+4
≥5+2$\sqrt{4}$=9,
当且仅当$\frac{4x}{y}$=$\frac{y}{x}$时,取等号.
故答案为 9.
点评 本题考查基本不等式的应用,把要求的式子变形为(x+y)($\frac{1}{x}$+$\frac{4}{y}$)=1+$\frac{4x}{y}$+$\frac{y}{x}$+4是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{5}{2}$] | B. | (-∞,-2] | C. | [-$\frac{5}{2}$,-2] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | B. | 函数g(x)为奇函数 | ||
| C. | 函数f(x)在[0.π]递减 | D. | 函数g(x)的最大值为2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com