精英家教网 > 高中数学 > 题目详情
已知p:|x-3|≤2,q:(x-m+1)•(x-m-1)≤0,若?p是?q的充分而不必要条件,求实数m的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质求解命题p,q以及¬p和¬q,根据充分条件和必要条件的定义即可得到结论.
解答: 解 由题意p:-2≤x-3≤2,
∴1≤x≤5.
∴¬p:x<1或x>5.
q:m-1≤x≤m+1,
∴¬q:x<m-1或x>m+1.
又¬p是¬q的充分而不必要条件,
∴2≤m≤4,
即实数m的取值范围是[2,4].
点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求解p,q以及¬p和¬q的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,3,-x2},B={1,x+2},是否存在实数x使得B∪(∁AB)=A成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且an=
n+1
2
1
S1
+
1
S2
+…+
1
Sn
)(n∈N*
①求a1,a2,a3
②求数列{an}的通项公式an
③若数列{bn}满足b1=1,bn=
1
bn-1
+
1
an
(n≥2),求证:bn2<2+2(
1
2
b1+
1
3
b2+
1
4
b3+…+
1
n
bn-1)(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在区间(a,b)的零点按精确度为ε求出的结果与精确到ε求出的结果可以相等,则称函数y=f(x)在区间(a,b)的零点为“和谐零点”.试判断函数f(x)=x3+x2-2x-2在区间(1,1.5)上,按ε=0.1用二分法逐次计算,求出的零点是否为“和谐零点”.(参考数据f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1-1(a>0且a≠1)
(1)若函数y=f(x)的图象恒过定点P,求点P的坐标;
(2)若f(lga)=99,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(ax2+2x+3)
(1)当a=-1时,求该函数的定义域和值域;
(2)若函数f(x)的定义域为R,求实数a的取值范围;
(3)如果f(x)≥1在区间[0,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2-x-6>0或x2+2x-8≤0,q:实数x满足x2-3ax+2a2<0,且¬p是¬q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:函数f(x)=-
1
x-1
在区间(-∞,0)上是增函数.

查看答案和解析>>

同步练习册答案