精英家教网 > 高中数学 > 题目详情
7.已知数列{an}满足a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1(n≥2,n∈N+),则a2016=1008.

分析 利用递推关系可得an+1-an=$\frac{1}{n}{a}_{n}$,化为:$\frac{{a}_{n+1}}{n+1}=\frac{{a}_{n}}{n}$=…=$\frac{{a}_{2}}{2}$=$\frac{1}{2}$,即可得出.

解答 解:∵数列{an}满足a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1(n≥2,n∈N+),
∴a2=a1=1,an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1+$\frac{1}{n}{a}_{n}$,
∴an+1-an=$\frac{1}{n}{a}_{n}$,
化为:$\frac{{a}_{n+1}}{n+1}=\frac{{a}_{n}}{n}$=…=$\frac{{a}_{2}}{2}$=$\frac{1}{2}$,
∴an=$\frac{n}{2}$.(n≥2)
则a2016=$\frac{2016}{2}$=1008.
故答案为:1008.

点评 本题考查了递推关系的应用、数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,则3x+y的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:x2+y2=9,直线l1:x-y-1=0与l2:x+2y-10=0的交点设为P点,过点P向圆C作两条切线a,b分别与圆相切于A,B两点,则S△ABP=$\frac{192}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:x2+y2-4x=0与直线y=x+b相交于M,N两点,且满足CM⊥CN(C为圆心),则实数b的值为0或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y均为正实数,x+y=1,则x•2x+y•2y的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式:x${\;}^{lo{g}_{a}x}$>$\frac{{x}^{4}\sqrt{x}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果二次函数y=x2+4x+(m+3)有两个不同的零点,则m的取值范围是(  )
A.(-∞,1)B.(-2,6)C.[-2,6]D.{-2,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\left\{\begin{array}{l}2x-{x^2},0≤x≤3\\{x^2}+6x,-2≤x<0\end{array}\right.$的值域是(  )
A.[-8,1]B.[-8,-3]C.RD.[-9,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

同步练习册答案