精英家教网 > 高中数学 > 题目详情
已知sinα+sinβ=
2
3
,cosα+cosβ=
4
3
,求cos(α-β)的值.
考点:两角和与差的余弦函数
专题:计算题,三角函数的求值
分析:sinα+sinβ=
2
3
⇒sin2α+sin2β+2sinαsinβ=
4
9
①,cosα+cosβ=
4
3
⇒cos2α+cos2β+2cosαcosβ=
16
9
②,从而可得cos(α-β)的值.
解答: 解:∵sinα+sinβ=
2
3

∴sin2α+sin2β+2sinαsinβ=
4
9
;①
又cosα+cosβ=
4
3

∴cos2α+cos2β+2cosαcosβ=
16
9
;②
①+②得:2+2cos(α-β)=
4
9
+
16
9
=
20
9

∴cos(α-β)=
1
9
点评:本题考查三角函数的求值,着重考查两角和与差的余弦函数,考查“平方关系”的应用,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=x2+
1
x
(x>0)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠B=30°,AC=1.
(1)求:AB+
3
BC的最大值;
(2)求:△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:(x2-x-1)(x2-x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x-1.
(1)当a=2时,求函数f(x)的零点;
(2)当a=2且x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,求m的取值范围;
(3)若a=0,设g(x)=
b
x
(b≠0)
,且函数h(x)=g(x)-f(x)是区间(1,3)上的单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件α:|x-a|<2,条件β:
2x-1
x+2
≤1,且β是α的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|-3<x<6},集合A={x|-2<x<1},B={x|5<x<6},则A与∁UB的关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=x2+2x,那么不等式f(x+1)<3的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(2x-
π
6
)的最小正周期是(  )
A、4π
B、2π
C、π
D、
π
2

查看答案和解析>>

同步练习册答案