分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答
解:作出不等式组$\left\{\begin{array}{l}x≤2\\ y<1\\ x+2y-2≥0\end{array}\right.$对应的平面区域如图:
∵$z=\frac{x+y+2}{x+1}$=1+$\frac{y+1}{x+1}$,设k=$\frac{y+1}{x+1}$,则k的几何意义为区域内的点到定点D(-1,-1)的斜率,
由图象知BD的斜率最小,AD的斜率最大,如果A在可行域则k的最大为:$\frac{1+1}{0+1}$=2,最小为:$\frac{1+0}{2+1}$=$\frac{1}{3}$,
即$\frac{1}{3}≤$k<2,
则$\frac{4}{3}$≤k+1<3,
故$z=\frac{x+y+2}{x+1}$的取值范围是[$\frac{4}{3}$,3),
故答案为:[$\frac{4}{3}$,3).
点评 本题主要考查线性规划的应用,利用z的几何意义以及斜率的计算,通过数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ln2 | B. | ln2+1 | C. | 1 | D. | $\frac{{{e^2}-1}}{{4{e^2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 10 | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $24+({\sqrt{2}+1})π$ | B. | $24+({\sqrt{2}-1})π$ | C. | $24-({\sqrt{2}+1})π$ | D. | $24-({\sqrt{2}-1})π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p∧¬q | B. | ¬p∧q | C. | p∧¬q | D. | p∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com