精英家教网 > 高中数学 > 题目详情
12.若实数x,y满足不等式组$\left\{\begin{array}{l}x≤2\\ y<1\\ x+2y-2≥0\end{array}\right.$,则$z=\frac{x+y+2}{x+1}$的取值范围是为[$\frac{4}{3}$,3).

分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.

解答 解:作出不等式组$\left\{\begin{array}{l}x≤2\\ y<1\\ x+2y-2≥0\end{array}\right.$对应的平面区域如图:
∵$z=\frac{x+y+2}{x+1}$=1+$\frac{y+1}{x+1}$,设k=$\frac{y+1}{x+1}$,则k的几何意义为区域内的点到定点D(-1,-1)的斜率,
由图象知BD的斜率最小,AD的斜率最大,如果A在可行域则k的最大为:$\frac{1+1}{0+1}$=2,最小为:$\frac{1+0}{2+1}$=$\frac{1}{3}$,
即$\frac{1}{3}≤$k<2,
则$\frac{4}{3}$≤k+1<3,
故$z=\frac{x+y+2}{x+1}$的取值范围是[$\frac{4}{3}$,3),
故答案为:[$\frac{4}{3}$,3).

点评 本题主要考查线性规划的应用,利用z的几何意义以及斜率的计算,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.二项式(x-a)7的展开式中,含x4项的系数为-280,则${∫}_{a}^{2e}$$\frac{1}{x}$dx=(  )
A.ln2B.ln2+1C.1D.$\frac{{{e^2}-1}}{{4{e^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某变量x,y,z满足约束条件$\left\{\begin{array}{l}x+y≤2\\ 2x-3y≤9\\ x≥0\end{array}\right.$则z=3x-y的最大值为(  )
A.-2B.10C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(1,1),$\overrightarrow m$=$\overrightarrow a$-$\overrightarrow b$,$\overrightarrow n$=$\overrightarrow a$+λ$\overrightarrow b$,如果$\overrightarrow m$⊥$\overrightarrow n$,那么实数λ=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,图中四边形都是边长为2的正方形,两条虚线相互垂直,则该几何体的表面积是(  )
A.$24+({\sqrt{2}+1})π$B.$24+({\sqrt{2}-1})π$C.$24-({\sqrt{2}+1})π$D.$24-({\sqrt{2}-1})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a>0且a≠1,b>0,若函数y=ax+b的大致图象如图所示,则函数y=logax-b的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,2x+$\frac{1}{{2}^{x}}$>2,命题q:?x∈[0,$\frac{π}{2}$],使sinx+cosx=$\frac{1}{2}$,则下列命题中为真命题的是(  )
A.¬p∧¬qB.¬p∧qC.p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{1}{2+sinx+cosx}$的最大值是1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线y=x-1与椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$交于A、B两点,则线段AB的长为$\frac{24}{7}$.

查看答案和解析>>

同步练习册答案