精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知定义域为的函数同时满足以下三个条件:
①对任意的,总有;②;③若,则有成立,则称为“友谊函数”.
(Ⅰ)若已知为“友谊函数”,求的值;
(Ⅱ)函数在区间上是否为“友谊函数”?并给出理由;
(Ⅲ)已知为“友谊函数”,且 ,求证:.

(Ⅰ)
(Ⅱ)满足条件①﹑②﹑③所以为友谊函数
(Ⅲ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)判断的奇偶性并证明;
(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;
(3)若,使的值域为[]的定义域区间[]()是否存在?若存在,求出[],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设,其中,且为自然对数的底)
(1)求的关系;
(2)在其定义域内的单调函数,求的取值范围;
(3)求证:(i) 
(ii) ()。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(Ⅰ)若的解集是,求实数的值;
(Ⅱ)若为整数,,且函数上恰有一个零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为(0,1](为实数).
⑴当时,求函数的值域;
⑵若函数在定义域上是减函数,求的取值范围;
⑶求函数x∈(0,1]上的最大值及最小值,并求出函数取最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在(-1,1)上的奇函数,且
(1)试求出函数的解析式;
(2)证明函数在定义域内是单调增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.已知函数
(1)判断函数在区间上是否为“弱增”函数
(2)设,证明
(3)当时,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数满足函数在定义域上是偶函数,函数在区间上是减函数,且在区间(-2,0)上是增函数.
(Ⅰ)求的值;
(Ⅱ)如果在区间上存在函数满足,当x为何值时,得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数上是增函数.

查看答案和解析>>

同步练习册答案