精英家教网 > 高中数学 > 题目详情

【题目】2020年初,新型冠状病毒肺炎(COVID19)在我国爆发,全国人民团结一心、积极抗疫,为全世界疫情防控争取了宝贵的时间,积累了丰富的经验.某研究小组为了研究某城市肺炎感染人数的增长情况,在官方网站.上搜集了7组数据,并依据数据制成如下散点图:

图中表示日期代号(例如21日记为“1”22日记为“2”,以此类推).通过对散点图的分析,结合病毒传播的相关知识,该研究小组决定用指数型函数模型来拟合,为求出关于的回归方程,可令,则线性相关.初步整理后,得到如下数据:

1)根据所给数据,求出关于的线性回归方程:

2)求关于的回归方程;若防控不当,请问为何值时,累计确诊人数的预报值将超过1000?(参考数据:,结果保留整数)

附:对于一组数据,其线性回归方程的斜率和截距的最小二乘估计公式分别为

【答案】12

【解析】

1)根据参考公式求出这两个系数,从而得到,于是可知回归方程;

2)把代入(1)中求出的回归方程,即可得到关于的回归方程为再解不等式即可得解.

1

关于的线性回归方程为

2)把代入

可得关于的回归方程为

,得

解得,即当时,累计确诊人数将超过1000人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

3)当,方程有唯一实数解,求正数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.

1)求证:平面平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若关于的方程恰有三个不相等的实数解,则的取值范围是  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多边形中(图1).四边形为长方形,为正三角形,,现以为折痕将折起,使点在平面内的射影恰好是的中点(图2).

1)证明:平面

2)若点在线段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人们通常以分贝(符号是)为单位来表示声音强度的等级,30~40分贝是较理想的安静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力,为了保护听力,应控制噪声不超过90分贝,一般地,如果强度为的声音对应的等级为,则有,则的声音与的声音强度之比为(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中mn为常数)

1)当时,对恒成立,求实数n的取值范围;

2)若曲线处的切线方程为,函数的零点为,求所有满足的整数k的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:

(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在的范围内的概率;

(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:

普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.

方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)

请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.

查看答案和解析>>

同步练习册答案