精英家教网 > 高中数学 > 题目详情
3.设曲线y=xlnx在点(e,e)处的切线与直线ax+y+1=0垂直,则a=$\frac{1}{2}$.

分析 先求出导数,求得函数y在点(e,e)处的斜率,再利用两条直线互相垂直,斜率之间的关系k1•k2=-1,求出未知数a.

解答 解:y′=lnx+x•$\frac{1}{x}$=1+lnx,
令x=e解得在点(e,e)处的切线的斜率为2,
由于切线与直线ax+y+1=0垂直,
即有2•(-a)=-1解得a=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查了利用导数研究曲线上某点切线方程,以及导数的几何意义:在切点处的导数值即为切线的斜率,两直线垂直则斜率乘积为-1,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若tanx=3,求$\frac{si{n}^{2}x+2sinxcosx+co{s}^{2}x}{co{s}^{2}x-si{n}^{2}x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数取得最大值,最小值的自变量的集合,并写出最大值,最小值各是多少.
(1)y=2sinx,x∈R
(2)y=2-cos$\frac{x}{3}$,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g(x)在点P处相切,称点P为这两个函数的切点.设函数f(x)=ax2-bx(a≠0),g(x)=lnx.
(Ⅰ)当a=-1,b=0时,判断函数f(x)和g(x)是否相切?并说明理由;
(Ⅱ)已知a=b,a>0,且函数f(x)和g(x)相切,求切点P的坐标;
(Ⅲ)设a>0,点P的坐标为$(\frac{1}{e},-1)$,问是否存在符合条件的函数f(x)和g(x),使得它们在点P处相切?若点P的坐标为(e2,2)呢?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线y=2lnx-1在点(e,1)处的切线与y轴交点的坐标为(0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线y=kx是曲线y=x3-x2+x的切线,则k的值为1或$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线f(x)=$\frac{1}{2}$x2在点(1,$\frac{1}{2}$)处的切线方程为(  )
A.2x+2y+1=0B.2x+2y-1=0C.2x-2y-3=0D.2x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=cos2($\frac{π}{4}+x$)-cos2($\frac{π}{4}-x$)则f($\frac{π}{12}$)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(x+b)+$\frac{ax}{x+1}$的图象在点(0,f(0))处的切线方程式3x-y=0,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案