精英家教网 > 高中数学 > 题目详情
12.已知圆心为C的圆经过点A(1,1)和点B(2,-2)且圆心C在直线l:x+3y+3=0上.
(1)求圆C的方程.
(2)若P是直线3x+4y-21=0上的动点,PM,PN是圆C的两条切线,M,N为切点,设|PC|=t,把四边形PMCN的面积S表示为t的函数,并求出该函数的最小值.

分析 (1)利用待定系数法,求出圆心坐标,即可求圆C的方程.
(2)利用勾股定理求出PM,即可求出S,t的最小值为C到直线的距离,即可求出该函数的最小值.

解答 解:(1)设圆心为(-3a-3,a),则(-3a-3-1)2+(a-1)2=(-3a-3-2)2+(a+2)2,∴a=-1,
∴圆C的方程为x2+(y+1)2=5;
(2)PM=$\sqrt{{t}^{2}-5}$,∴S=2×$\frac{1}{2}×PM×\sqrt{5}$=$\sqrt{5}•\sqrt{{t}^{2}-5}$,
t的最小值为C到直线的距离,即d=$\frac{|0-4-21|}{5}$=5,
∴S的最小值=$\sqrt{5}•\sqrt{25-5}$=10.

点评 本题考查圆的方程,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a)≤f(2),则实数a的取值范围是(  )
A.(-∞,2]B.(0,2]C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果集合A={x|x>-1},那么(  )
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点$P(2\sqrt{3},3)$且倾斜角为30o的直线方程为(  )
A..$y+4\sqrt{3}=3x$B..$y=x-\sqrt{3}$C.$3y-3=\sqrt{3}x$D..$y-\sqrt{3}=\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆(x-1)2+(y+2)2=6的圆心到直线2x+y-5=0的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.${8^{-\frac{1}{3}}}+{log_3}$tan210°=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知z=(m-3)+(m+1)i在复平面内对应的点在第二象限,则实数m的取值范围是(  )
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥A-BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.
(Ⅰ)证明:EM∥平面ABC;
(Ⅱ)若CD=2,求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出S的值为(  )
A.40B.38C.32D.20

查看答案和解析>>

同步练习册答案