精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2-2kx+1在[1,+∞)上是增函数,则实数k的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:先明确二次函数的对称轴和开口方向,再由函数在[1,+∞]上单调递增,则对称轴在区间的左侧求解.
解答: 解:函数y=x2-2kx+1的对称轴为:x=k,图象开口向上,
∵函数在[1,+∞)上单调递增
∴k≤1
故答案为:(-∞,1]
点评:本题主要考查二次函数的性质,涉及了二次函数的对称性和单调性,在研究二次函数单调性时,一定要明确开口方向和对称轴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项为a(a≠0),前n项和为Sn,且有Sn+1=tSn+a(t≠0),bn=Sn+1.
(1)求数列{an}的通项公式;
(2)当t=1时,若对任意n∈N*,都有|bn|≥|b5|,求a的取值范围;
(3)当t≠1时,若cn=2+
n
i=1
bi
,求能够使数列{cn}为等比数列的所有数对(a,t).

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是偶函数且在(0,+∞)上减函数,又f(-3)=1,则不等式f(x)<1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,M是正方形ABCD的中心,N是棱CC1(包括端点)上的动点,现给出以下命题:
①对于任意的点N,都有MN⊥B1D1
②存在点N,使得MN⊥平面A1BD;
③存在点N,使得异面直线MN和A1B1所成角的余弦值是
6
3

④对于任意的点N,三棱锥B-MND1的体积为定值.
其中正确命题的编号是
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2BC=2,∠A=
π
6
,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从一个棱长为3的正方体中切去一些部分,得到一个几何体,其三视图如图,则该几何体的体积是(  )
A、3B、7C、9D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-a•2x与f(x)=4x+a+1的图象有交点,则a的取值范围是(  )
A、a≤2-2
2
或 a≥2+2
2
B、a<-1
C、-1≤a≤2-2
2
D、a≤2-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(1)=1,且f(x)的导数f′(x)在R上恒有f′(x)<
1
2
,则不等式f(x)<
1
2
x+
1
2
的解集为(  )
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.
(1)若B⊆A,求m值;
(2)若A⊆∁RB,求m的取值范围.

查看答案和解析>>

同步练习册答案